File size: 7,215 Bytes
7f46a81
 
 
a70549c
16848ed
7f46a81
 
4b73929
16848ed
4b73929
a70549c
 
7f46a81
0265ffe
a70549c
16848ed
 
 
 
 
 
 
 
 
 
 
0265ffe
907ed81
 
4949582
907ed81
7f46a81
 
a70549c
 
 
 
 
 
907ed81
16848ed
7f46a81
907ed81
 
16848ed
907ed81
0265ffe
4b73929
 
 
 
 
 
 
0a5fe3b
0265ffe
907ed81
0265ffe
907ed81
0265ffe
907ed81
 
 
 
e80161b
16848ed
 
907ed81
 
3e51bf6
16848ed
 
0a5fe3b
 
0265ffe
 
907ed81
 
 
7f46a81
 
 
 
 
0265ffe
 
16848ed
 
 
 
 
a70549c
16848ed
7f46a81
a70549c
 
 
 
 
 
 
7f46a81
 
 
 
 
907ed81
7f46a81
 
0265ffe
7f46a81
0265ffe
7f46a81
907ed81
a70549c
0265ffe
 
 
 
 
0a5fe3b
 
 
 
 
 
907ed81
0a5fe3b
3e51bf6
 
 
 
 
2a5b875
 
 
0a5fe3b
 
2a5b875
 
 
 
a70549c
 
2a5b875
 
 
 
a70549c
 
2a5b875
 
16848ed
 
a70549c
 
 
 
 
 
0a5fe3b
16848ed
 
 
a70549c
 
 
 
2a5b875
7f46a81
0265ffe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from omegaconf import OmegaConf
from query import VectaraQuery
import os
from PIL import Image
import uuid

import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback

from utils import thumbs_feedback, send_amplitude_data, escape_dollars_outside_latex


max_examples = 6
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'fra', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara',
             'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas',
             'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr',
             'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'}

# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
    st.session_state.device_id = str(uuid.uuid4())


if "feedback_key" not in st.session_state:
        st.session_state.feedback_key = 0

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return x
    return x.strip().lower() == 'true'

def launch_bot():
    def reset():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True


    def generate_response(question):
        response = vq.submit_query(question, languages[st.session_state.language])
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question, languages[st.session_state.language])
        return response
    
    def show_example_questions():        
        if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
            selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
            if selected_example:
                st.session_state.ex_prompt = selected_example
                st.session_state.first_turn = False
                return True
        return False

    if 'cfg' not in st.session_state:
        corpus_keys = str(os.environ['corpus_keys']).split(',')
        cfg = OmegaConf.create({
            'corpus_keys': corpus_keys,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None),
            'examples': os.environ.get('examples', None),
            'language': 'English'
        })
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True
        st.session_state.language = cfg.language
        example_messages = [example.strip() for example in cfg.examples.split(",")]
        st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
        
        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=175)
        st.markdown(f"## About\n\n"
                    f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n")
        
        cfg.language = st.selectbox('Language:', languages.keys())
        if st.session_state.language != cfg.language:
            st.session_state.language = cfg.language
            reset()
            st.rerun()

        st.markdown("\n")
        bc1, _ = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
                st.rerun()

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )
        st.markdown("---")
        

    st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        reset()
                
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.rerun()

    # select prompt from example question or user provided input
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt)
                response = st.write_stream(stream)
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)

            response = escape_dollars_outside_latex(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message)

            # Send query and response to Amplitude Analytics
            send_amplitude_data(
                user_query=st.session_state.messages[-2]["content"],
                chat_response=st.session_state.messages[-1]["content"],
                demo_name=cfg["title"],
                language=st.session_state.language
            )
            st.rerun()

    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
        streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
                                      kwargs = {"user_query": st.session_state.messages[-2]["content"],
                                                "chat_response": st.session_state.messages[-1]["content"],
                                                "demo_name": cfg["title"],
                                                "response_language": st.session_state.language})
    
if __name__ == "__main__":
    launch_bot()