Spaces:
Running
Running
Commit
·
7f46a81
0
Parent(s):
Duplicate from ofermend/Ask-Langchain
Browse files- .gitattributes +35 -0
- README.md +14 -0
- Vectara-logo.png +0 -0
- app.py +76 -0
- query.py +92 -0
- requirements.txt +4 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Ask Feynman
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.25.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
duplicated_from: ofermend/Ask-Langchain
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
Vectara-logo.png
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import toml
|
3 |
+
from omegaconf import OmegaConf
|
4 |
+
from query import VectaraQuery
|
5 |
+
import os
|
6 |
+
|
7 |
+
import streamlit as st
|
8 |
+
from PIL import Image
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
def set_query(q: str):
|
12 |
+
st.session_state['query'] = q
|
13 |
+
|
14 |
+
def launch_bot():
|
15 |
+
def get_answer(question):
|
16 |
+
response = vq.submit_query(question)
|
17 |
+
return response
|
18 |
+
|
19 |
+
corpus_ids = list(eval(os.environ['corpus_ids']))
|
20 |
+
questions = list(eval(os.environ['examples']))
|
21 |
+
cfg = OmegaConf.create({
|
22 |
+
'customer_id': os.environ['customer_id'],
|
23 |
+
'corpus_ids': corpus_ids,
|
24 |
+
'api_key': os.environ['api_key'],
|
25 |
+
'title': os.environ['title'],
|
26 |
+
'description': os.environ['description'],
|
27 |
+
'examples': questions,
|
28 |
+
'source_data_desc': os.environ['source_data_desc']
|
29 |
+
})
|
30 |
+
vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids)
|
31 |
+
st.set_page_config(page_title=cfg.title, layout="wide")
|
32 |
+
|
33 |
+
# left side content
|
34 |
+
with st.sidebar:
|
35 |
+
image = Image.open('Vectara-logo.png')
|
36 |
+
st.markdown(f"## Welcome to {cfg.title}\n\n"
|
37 |
+
f"With this demo uses [Grounded Generation](https://vectara.com/grounded-generation-making-generative-ai-safe-trustworthy-more-relevant/) to ask questions about {cfg.source_data_desc}\n\n")
|
38 |
+
|
39 |
+
st.markdown("---")
|
40 |
+
st.markdown(
|
41 |
+
"## How this works?\n"
|
42 |
+
"This app was built with [Vectara](https://vectara.com).\n"
|
43 |
+
"Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
|
44 |
+
"This app uses Vectara API to query the corpus and present the results to you, answering your question.\n\n"
|
45 |
+
)
|
46 |
+
st.markdown("---")
|
47 |
+
st.image(image, width=250)
|
48 |
+
|
49 |
+
st.markdown(f"<center> <h2> Vectara demo app: {cfg.title} </h2> </center>", unsafe_allow_html=True)
|
50 |
+
st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True)
|
51 |
+
|
52 |
+
# Setup a split column layout
|
53 |
+
main_col, questions_col = st.columns([4, 2], gap="medium")
|
54 |
+
with main_col:
|
55 |
+
cols = st.columns([1, 8], gap="small")
|
56 |
+
cols[0].markdown("""<h5>Search</h5>""", unsafe_allow_html=True)
|
57 |
+
cols[1].text_input(label="search", key='query', max_chars=256, label_visibility='collapsed', help="Enter your question here")
|
58 |
+
|
59 |
+
st.markdown("<h5>Response</h5>", unsafe_allow_html=True)
|
60 |
+
response_text = st.empty()
|
61 |
+
response_text.text_area(f" ", placeholder="The answer will appear here.", disabled=True,
|
62 |
+
key="response", height=1, label_visibility='collapsed')
|
63 |
+
with questions_col:
|
64 |
+
st.markdown("<h5 style='text-align:center; color: red'> Sample questions </h5>", unsafe_allow_html=True)
|
65 |
+
for q in list(cfg.examples):
|
66 |
+
st.button(q, on_click=partial(set_query, q), use_container_width=True)
|
67 |
+
|
68 |
+
|
69 |
+
# run the main flow
|
70 |
+
if st.session_state.get('query'):
|
71 |
+
query = st.session_state['query']
|
72 |
+
response = get_answer(query)
|
73 |
+
response_text.markdown(response)
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
launch_bot()
|
query.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
from urllib.parse import quote
|
5 |
+
|
6 |
+
def extract_between_tags(text, start_tag, end_tag):
|
7 |
+
start_index = text.find(start_tag)
|
8 |
+
end_index = text.find(end_tag, start_index)
|
9 |
+
return text[start_index+len(start_tag):end_index-len(end_tag)]
|
10 |
+
|
11 |
+
class VectaraQuery():
|
12 |
+
def __init__(self, api_key: str, customer_id: int, corpus_ids: list):
|
13 |
+
self.customer_id = customer_id
|
14 |
+
self.corpus_ids = corpus_ids
|
15 |
+
self.api_key = api_key
|
16 |
+
|
17 |
+
def submit_query(self, query_str: str):
|
18 |
+
corpora_key_list = [{
|
19 |
+
'customer_id': str(self.customer_id), 'corpus_id': str(corpus_id), 'lexical_interpolation_config': {'lambda': 0.025}
|
20 |
+
} for corpus_id in self.corpus_ids
|
21 |
+
]
|
22 |
+
|
23 |
+
endpoint = f"https://api.vectara.io/v1/query"
|
24 |
+
start_tag = "%START_SNIPPET%"
|
25 |
+
end_tag = "%END_SNIPPET%"
|
26 |
+
headers = {
|
27 |
+
"Content-Type": "application/json",
|
28 |
+
"Accept": "application/json",
|
29 |
+
"customer-id": str(self.customer_id),
|
30 |
+
"x-api-key": self.api_key,
|
31 |
+
"grpc-timeout": "60S"
|
32 |
+
}
|
33 |
+
body = {
|
34 |
+
'query': [
|
35 |
+
{
|
36 |
+
'query': query_str,
|
37 |
+
'start': 0,
|
38 |
+
'numResults': 7,
|
39 |
+
'corpusKey': corpora_key_list,
|
40 |
+
'context_config': {
|
41 |
+
'sentences_before': 3,
|
42 |
+
'sentences_after': 3,
|
43 |
+
'start_tag': start_tag,
|
44 |
+
'end_tag': end_tag,
|
45 |
+
},
|
46 |
+
'summary': [
|
47 |
+
{
|
48 |
+
'responseLang': 'eng',
|
49 |
+
'maxSummarizedResults': 7,
|
50 |
+
}
|
51 |
+
]
|
52 |
+
}
|
53 |
+
]
|
54 |
+
}
|
55 |
+
|
56 |
+
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=headers)
|
57 |
+
if response.status_code != 200:
|
58 |
+
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
|
59 |
+
return "Sorry, something went wrong in my brain. Please try again later."
|
60 |
+
|
61 |
+
res = response.json()
|
62 |
+
|
63 |
+
summary = res['responseSet'][0]['summary'][0]['text']
|
64 |
+
responses = res['responseSet'][0]['response']
|
65 |
+
docs = res['responseSet'][0]['document']
|
66 |
+
pattern = r'\[\d{1,2}\]'
|
67 |
+
matches = [match.span() for match in re.finditer(pattern, summary)]
|
68 |
+
|
69 |
+
# figure out unique list of references
|
70 |
+
refs = []
|
71 |
+
for match in matches:
|
72 |
+
start, end = match
|
73 |
+
response_num = int(summary[start+1:end-1])
|
74 |
+
doc_num = responses[response_num-1]['documentIndex']
|
75 |
+
metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
|
76 |
+
text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
|
77 |
+
url = f"{metadata['url']}#:~:text={quote(text)}"
|
78 |
+
if url not in refs:
|
79 |
+
refs.append(url)
|
80 |
+
|
81 |
+
# replace references with markdown links
|
82 |
+
refs_dict = {url:(inx+1) for inx,url in enumerate(refs)}
|
83 |
+
for match in reversed(matches):
|
84 |
+
start, end = match
|
85 |
+
response_num = int(summary[start+1:end-1])
|
86 |
+
doc_num = responses[response_num-1]['documentIndex']
|
87 |
+
metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
|
88 |
+
text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
|
89 |
+
url = f"{metadata['url']}#:~:text={quote(text)}"
|
90 |
+
citation_inx = refs_dict[url]
|
91 |
+
summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]
|
92 |
+
return summary
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests_to_curl==1.1.0
|
2 |
+
toml==0.10.2
|
3 |
+
omegaconf==2.3.0
|
4 |
+
syrupy==4.0.8
|