File size: 4,387 Bytes
7f46a81
 
2640433
 
7f46a81
0265ffe
 
7f46a81
0265ffe
2640433
7f46a81
0265ffe
16848ed
0265ffe
 
 
7f46a81
 
2640433
0265ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16848ed
0265ffe
 
 
16848ed
 
0265ffe
 
 
 
 
 
7f46a81
e765e07
2640433
 
 
 
 
0265ffe
 
 
 
 
 
 
 
2640433
 
 
 
16848ed
2640433
0265ffe
 
 
 
 
16848ed
0265ffe
 
2640433
7f46a81
 
0265ffe
 
7f46a81
 
 
 
0265ffe
 
7f46a81
0265ffe
2640433
7f46a81
2640433
16848ed
2640433
0265ffe
 
 
 
 
16848ed
0265ffe
 
2640433
 
 
0265ffe
 
 
2640433
 
 
0265ffe
2640433
0265ffe
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import requests
import json


class VectaraQuery():
    def __init__(self, api_key: str, corpus_keys: list[str], prompt_name: str = None):
        self.corpus_keys = corpus_keys
        self.api_key = api_key
        self.prompt_name = prompt_name if prompt_name else "vectara-summary-ext-24-05-sml"
        self.conv_id = None

    
    def get_body(self, query_str: str, response_lang: str, stream: False):
        corpora_list = [{
                'corpus_key': corpus_key, 'lexical_interpolation': 0.005
            } for corpus_key in self.corpus_keys
        ]

        return {
            'query': query_str,
            'search':
            {
                'corpora': corpora_list,
                'offset': 0,
                'limit': 50,
                'context_configuration':
                {
                    'sentences_before': 2,
                    'sentences_after': 2,
                    'start_tag': "%START_SNIPPET%",
                    'end_tag': "%END_SNIPPET%",
                },
                'reranker':
                {
                    'type': 'customer_reranker',
		        'reranker_id': 'rnk_272725719'
                },
            },
            'generation':
            {
                'prompt_name': self.prompt_name,
                'max_used_search_results': 10,
                'response_language': response_lang,
                'citations':
                {
                    'style': 'none'
                },
                'enable_factual_consistency_score': False
            },
            'chat':
            {
                'store': True
            },
            'stream_response': stream
        }
    

    def get_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }
    
    def get_stream_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "text/event-stream",
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }

    def submit_query(self, query_str: str, language: str):

        if self.conv_id:
            endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
        else:
            endpoint = "https://api.vectara.io/v2/chats"

        body = self.get_body(query_str, language, stream=False)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())

        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            if response.status_code == 429:
                return "Sorry, Vectara chat turns exceeds plan limit."
            return "Sorry, something went wrong in my brain. Please try again later."

        res = response.json()

        if self.conv_id is None:
            self.conv_id = res['chat_id']

        summary = res['answer']
        
        return summary

    def submit_query_streaming(self, query_str: str, language: str):

        if self.conv_id:
            endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
        else:
            endpoint = "https://api.vectara.io/v2/chats"

        body = self.get_body(query_str, language, stream=True)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_stream_headers(), stream=True) 

        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            if response.status_code == 429:
                return "Sorry, Vectara chat turns exceeds plan limit."
            return "Sorry, something went wrong in my brain. Please try again later."        

        chunks = []
        for line in response.iter_lines():
            line = line.decode('utf-8')
            if line:  # filter out keep-alive new lines
                key, value = line.split(':', 1)
                if key == 'data':
                    line = json.loads(value)
                    if line['type'] == 'generation_chunk':
                        chunk = line['generation_chunk']
                        chunks.append(chunk)
                        yield chunk

        return ''.join(chunks)