File size: 6,658 Bytes
b1532b0
2abf116
 
a4dc223
f30185d
2abf116
f30185d
2abf116
 
b1532b0
f932259
b1532b0
 
 
f932259
6e0ffb7
2abf116
210730f
 
b1532b0
 
 
2abf116
210730f
 
 
2abf116
210730f
 
 
2abf116
210730f
 
2abf116
 
 
 
210730f
3bda041
4724a1e
3bda041
 
1f79208
6845b01
b1532b0
 
3bda041
2abf116
 
f30185d
a792718
2abf116
 
 
 
 
64af198
2abf116
 
 
 
 
 
 
 
 
 
 
 
 
64af198
2abf116
 
 
 
210730f
 
 
 
 
 
 
 
 
 
 
b3333a0
210730f
 
 
 
 
 
 
 
 
7557387
210730f
 
 
 
 
 
 
 
 
 
 
 
540630a
 
210730f
540630a
 
 
 
 
 
0fdfbbc
540630a
210730f
2abf116
ca2d13e
 
 
 
 
 
b1532b0
ca2d13e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1532b0
 
a4dc223
5012113
a4dc223
 
 
2abf116
 
a4dc223
e3ccbe7
0fdfbbc
 
 
 
a4dc223
2abf116
a4dc223
f30185d
a4dc223
5012113
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import ast
import json
import spaces
import requests
import numpy as np
import gradio as gr
from PIL import Image
from io import BytesIO
from turtle import title
from openai import OpenAI
from collections import Counter
from transformers import pipeline

client = OpenAI()

pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")

color_file_path = 'color_config.json'
attributes_file_path = 'attributes_config.json'
import os
OPENAIKEY = os.getenv("OPENAI_KEY")


# Open and read the COLOR JSON file
with open(color_file_path, 'r') as file:
    color_data = json.load(file)

# Open and read the ATTRIBUTES JSON file
with open(attributes_file_path, 'r') as file:
    attributes_data = json.load(file)

COLOURS_DICT = color_data['color_mapping']
ATTRIBUTES_DICT = attributes_data['attribute_mapping']


def shot(input, category):
    subColour,mainColour,score = get_colour(ast.literal_eval(str(input)),category)
    common_result = get_predicted_attributes(ast.literal_eval(str(input)),category)
    return {
        "colors":{
            "main":mainColour,
            "sub":subColour,
            "score":round(score*100,2)
        }, 
        "attributes":common_result,
        "image_mapping":openai_parsed_response
    }



@spaces.GPU  
def get_colour(image_urls, category):
    colourLabels = list(COLOURS_DICT.keys())
    for i in range(len(colourLabels)):
        colourLabels[i] = colourLabels[i] + " clothing: " + category

    responses = pipe(image_urls, candidate_labels=colourLabels)
    # Get the most common colour
    mainColour = responses[0][0]['label'].split(" clothing:")[0]


    if mainColour not in COLOURS_DICT:
        return None, None, None

    # Add category to the end of each label
    labels = COLOURS_DICT[mainColour]
    for i in range(len(labels)):
        labels[i] = labels[i] + " clothing: " + category

    # Run pipeline in one go
    responses = pipe(image_urls, candidate_labels=labels)
    subColour = responses[0][0]['label'].split(" clothing:")[0]

    return subColour, mainColour, responses[0][0]['score']

@spaces.GPU  
def get_predicted_attributes(image_urls, category):
    # Get the predicted attributes for the image
    # attributes = get_category_attributes(category)
    
    attributes = list(ATTRIBUTES_DICT.get(category,{}).keys())
    
    # Mapping of possible values per attribute
    common_result = []
    for attribute in attributes:
        # values = get_attribute_values(attribute, category)
        values = ATTRIBUTES_DICT.get(category,{}).get(attribute,[])

        if len(values) == 0:
            continue

        # Adjust labels for the pipeline to be in format: "{attr}: {value}, clothing: {category}"
        attribute = attribute.replace("colartype", "collar").replace("sleevelength", "sleeve length").replace("fabricstyle", "fabric")
        values = [f"{attribute}: {value}, clothing: {category}" for value in values]

        # Get the predicted values for the attribute
        responses = pipe(image_urls, candidate_labels=values)
        result = [response[0]['label'].split(", clothing:")[0] for response in responses]

        # If attribute is details, then get the top 2 most common labels
        if attribute == "details":
            result += [response[1]['label'].split(", clothing:")[0] for response in responses]
            common_result.append(Counter(result).most_common(2))
        else:
            common_result.append(Counter(result).most_common(1))

    # Clean up the results into one long string
    for i, result in enumerate(common_result):
        common_result[i] = ", ".join([f"{x[0]}" for x in result])
    
    result = {}

    # Iterate through the list and split each item into key and value
    for item in common_result:
        # Split by ': ' to separate the key and value
        key, value = item.split(': ', 1)
        # Add to the dictionary
        result[key] = value

    return result


def get_openAI_tags(image_urls):
    # Create list containing JSONs of each image URL
    imageList = []
    for image in image_urls:
        imageList.append({"type": "image_url", "image_url": {"url": image}})
    
    openai_response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
            "role": "system",
            "content": [
                {
                "type": "text",
                "text": "You're a tagging assistant, you will help label and tag product pictures for my online e-commerce platform. Your tasks will be to return which angle the product images were taken from. You will have to choose from 'full-body', 'half-body', 'side', 'back', or 'zoomed' angles. You should label each of the images with one of these labels depending on which you think fits best (ideally, every label should be used at least once, but only if there are 5 or more images), and should respond with nothing but the labels separated by a comma in the order of the images without any other text. You should label every picture, no more, no less."
                }
            ]
            },
            {
            "role": "user",
            "content": imageList
            },
        ],
        temperature=1,
        max_tokens=500,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0
    )
    response= json.loads(openai_response.choices[0].message.content)
    return response

# Define the Gradio interface with the updated components
iface = gr.Interface(
    fn=shot, 
    inputs=[
        gr.Textbox(label="Image URLs (starting with http/https) comma seperated "), 
        gr.Textbox(label="Category")
    ], 
    outputs="text" ,
     examples=[
        [['https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTEuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19',
 'https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTIuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19',
 'https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTMuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19'], "women-top-shirt"]],
    description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.",
    title="Full product flow"
)

# Launch the interface
iface.launch()