File size: 3,996 Bytes
2abf116 a4dc223 f30185d 2abf116 f30185d 2abf116 6e0ffb7 2abf116 210730f 2abf116 210730f 2abf116 210730f 2abf116 210730f 2abf116 210730f 3bda041 4724a1e 3bda041 1f79208 6845b01 210730f 3bda041 2abf116 f30185d a792718 2abf116 64af198 2abf116 64af198 2abf116 210730f 2abf116 a4dc223 5012113 a4dc223 2abf116 a4dc223 e3ccbe7 a4dc223 2abf116 a4dc223 f30185d a4dc223 5012113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import json
import spaces
import requests
import numpy as np
import gradio as gr
from PIL import Image
from io import BytesIO
from turtle import title
from transformers import pipeline
import ast
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
color_file_path = 'color_config.json'
attributes_file_path = 'attributes_config.json'
# Open and read the COLOR JSON file
with open(color_file_path, 'r') as file:
color_data = json.load(file)
# Open and read the ATTRIBUTES JSON file
with open(attributes_file_path, 'r') as file:
attributes_data = json.load(file)
COLOURS_DICT = color_data['color_mapping']
ATTRIBUTES_DICT = attributes_data['attribute_mapping']
def shot(input, category):
subColour,mainColour,score = get_colour(ast.literal_eval(str(input)),category)
common_result = get_predicted_attributes(ast.literal_eval(str(input)),category)
return {
"colors":{
"main":mainColour,
"sub":subColour,
"score":round(score*100,2)
},
"attributes":common_result
}
@spaces.GPU
def get_colour(image_urls, category):
colourLabels = list(COLOURS_DICT.keys())
for i in range(len(colourLabels)):
colourLabels[i] = colourLabels[i] + " clothing: " + category
responses = pipe(image_urls, candidate_labels=colourLabels)
# Get the most common colour
mainColour = responses[0][0]['label'].split(" clothing:")[0]
if mainColour not in COLOURS_DICT:
return None, None, None
# Add category to the end of each label
labels = COLOURS_DICT[mainColour]
for i in range(len(labels)):
labels[i] = labels[i] + " clothing: " + category
# Run pipeline in one go
responses = pipe(image_urls, candidate_labels=labels)
subColour = responses[0][0]['label'].split(" clothing:")[0]
return subColour, mainColour, responses[0][0]['score']
@spaces.GPU
def get_predicted_attributes(image_urls, category):
# Get the predicted attributes for the image
# attributes = get_category_attributes(category)
attributes = list(ATTRIBUTES_DICT.get(category,{}).keys())
# Mapping of possible values per attribute
common_result = []
for attribute in attributes:
# values = get_attribute_values(attribute, category)
values = list(ATTRIBUTES_DICT.get(category,{}).get(attribute,{}).keys())
if len(values) == 0:
continue
# Adjust labels for the pipeline to be in format: "{attr}: {value}, clothing: {category}"
attribute = attribute.replace("colartype", "collar").replace("sleevelength", "sleeve length").replace("fabricstyle", "fabric")
values = [f"{attribute}: {value}, clothing: {category}" for value in values]
# Get the predicted values for the attribute
responses = pipe(image_urls, candidate_labels=values, device=device)
result = [response[0]['label'].split(", clothing:")[0] for response in responses]
# If attribute is details, then get the top 2 most common labels
if attribute == "details":
result += [response[1]['label'].split(", clothing:")[0] for response in responses]
common_result.append(Counter(result).most_common(2))
else:
common_result.append(Counter(result).most_common(1))
# Clean up the results into one long string
for i, result in enumerate(common_result):
common_result[i] = ", ".join([f"{x[0]}" for x in result])
return common_result
# Define the Gradio interface with the updated components
iface = gr.Interface(
fn=shot,
inputs=[
gr.Textbox(label="Image URLs (starting with http/https) comma seperated "),
gr.Textbox(label="Category")
],
outputs="text" ,
description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.",
title="Full product flow"
)
# Launch the interface
iface.launch()
|