metric / image_operators.py
Elron's picture
Upload folder using huggingface_hub
24df49f verified
import base64
import io
import re
from abc import abstractmethod
from typing import Any, Dict, Tuple
import numpy as np
from datasets import Image as DatasetsImage
from .augmentors import TaskInputsAugmentor
from .dict_utils import dict_get
from .operator import PackageRequirementsMixin
from .operators import FieldOperator, InstanceFieldOperator
from .settings_utils import get_constants
from .type_utils import isoftype
from .types import Image
constants = get_constants()
datasets_image = DatasetsImage()
def _image_to_bytes(image, format="JPEG"):
import base64
with io.BytesIO() as buffer:
image.save(buffer, format=format)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
class ImageDataString(str):
def __repr__(self) -> str:
if len(self) > 30:
return '<ImageDataString "' + self[:30] + '...">'
return super().__repr__()
def image_to_data_url(image: Image, default_format="JPEG"):
"""Convert an image to a data URL.
https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data
"""
image_format = image["format"] if image["format"] else default_format
base64_image = _image_to_bytes(image["image"], format=image_format.upper())
return ImageDataString(f"data:image/{image_format.lower()};base64,{base64_image}")
def _bytes_to_image(b64_string):
import base64
import io
from PIL import Image
# Decode the base64-encoded string
decoded_bytes = base64.b64decode(b64_string)
# Open the image from the decoded bytes
return Image.open(io.BytesIO(decoded_bytes))
def data_url_to_image(data_url: str):
import re
# Verify that the string is a data URL
if not data_url.startswith("data:"):
raise ValueError("Invalid data URL")
# Extract the base64 data using a regular expression
match = re.match(r"data:image/(.*?);base64,(.*)", data_url)
if not match:
raise ValueError("Invalid data URL format")
# Extract image format and base64 data
image_format, b64_data = match.groups()
# Use _bytes_to_image to convert base64 data to an image
return _bytes_to_image(b64_data)
class PillowMixin(PackageRequirementsMixin):
_requirements_list = {"PIL": "pip install pillow"}
def prepare(self):
super().prepare()
import PIL
from PIL import Image, ImageEnhance, ImageFilter
self.pil = PIL
self.image = Image
self.enhance = ImageEnhance
self.filter = ImageFilter
def extract_images(instance):
regex = r"<" + f"{constants.image_tag}" + r'\s+src=["\'](.*?)["\']'
image_sources = re.findall(regex, instance["source"])
images = []
for image_source in image_sources:
image = dict_get(instance, image_source)
images.append(image)
return images
class EncodeImageToString(FieldOperator):
image_format: str = "JPEG"
def encode_image_to_base64(self, image):
buffer = io.BytesIO()
image.save(buffer, format=self.image_format)
return ImageDataString(base64.b64encode(buffer.getvalue()).decode("utf-8"))
def process_value(self, value: Any) -> Any:
return {"image": self.encode_image_to_base64(value)}
class DecodeImage(FieldOperator, PillowMixin):
def process_value(self, value: str) -> Any:
image_data = base64.b64decode(value)
return self.image.open(io.BytesIO(image_data))
class ToImage(InstanceFieldOperator):
def process_instance_value(self, value: Any, instance: Dict[str, Any]) -> Image:
return {
"image": value,
"format": value.format if value.format is not None else "JPEG",
}
class ImageFieldOperator(FieldOperator, PillowMixin):
@abstractmethod
def process_image(self, image: Any):
pass
def process_value(self, value: Image) -> Any:
if not isinstance(value["image"], self.image.Image):
raise ValueError(f"ImageFieldOperator requires image, got {type(value)}.")
value["image"] = self.process_image(value["image"])
return value
class ImageAugmentor(TaskInputsAugmentor, PillowMixin):
augmented_type: object = Image
@abstractmethod
def process_image(self, image: Any):
pass
def process_value(self, value: Image) -> Any:
if not isoftype(value, Image):
return value
value["image"] = self.process_image(value["image"])
return value
class GrayScale(ImageAugmentor):
def process_image(self, image):
# Convert the image to grayscale
grayscale_image = image.convert("L")
# Convert the grayscale image to a NumPy array
grayscale_array = np.array(grayscale_image)
# Add a dummy channel dimension to make it (height, width, 1)
grayscale_array = np.expand_dims(grayscale_array, axis=-1)
# Repeat the channel to have (height, width, 3) if needed for compatibility
grayscale_array = np.repeat(grayscale_array, 3, axis=-1)
# Convert back to a PIL image with 3 channels
return self.image.fromarray(grayscale_array)
class GridLines(ImageAugmentor):
"""A class that overlays a fixed number of evenly spaced horizontal and vertical lines on an image.
Args:
num_lines (int):
The number of horizontal and vertical lines to add.
line_thickness (int):
Thickness of each line in pixels.
line_color (Tuple[int, int, int]):
RGB color of the grid lines.
Methods:
process_image(image): Adds grid lines to the provided image and returns the modified image.
"""
num_lines: int = 128
line_thickness: int = 1
line_color: Tuple[int, int, int] = (255, 255, 255)
def process_image(self, image):
image_array = np.array(image)
# Determine image dimensions
height, width, _ = image_array.shape
# Calculate spacing for the lines based on image size and number of lines
horizontal_spacing = height // (self.num_lines + 1)
vertical_spacing = width // (self.num_lines + 1)
# Add horizontal lines
for i in range(1, self.num_lines + 1):
y = i * horizontal_spacing
image_array[y : y + self.line_thickness, :, :] = self.line_color
# Add vertical lines
for i in range(1, self.num_lines + 1):
x = i * vertical_spacing
image_array[:, x : x + self.line_thickness, :] = self.line_color
# Convert back to a PIL image
return self.image.fromarray(image_array)
class PixelNoise(ImageAugmentor):
"""A class that overlays a mask of randomly colored nxn squares across an image based on a specified noise rate.
Args:
square_size (int):
Size of each square in pixels.
noise_rate (float):
Proportion of the image that should be affected by noise (0 to 1).
Methods:
process_image(image):
Adds the random square mask to the provided image and returns the modified image.
"""
square_size: int = 1
noise_rate: float = 0.3 # Percentage of squares to be randomly colored
def process_image(self, image):
image_array = np.array(image)
height, width, channels = image_array.shape
# Calculate grid dimensions
y_squares = height // self.square_size
x_squares = width // self.square_size
# Create a grid indicating where to apply the mask
noise_mask = np.random.rand(y_squares, x_squares) < self.noise_rate
# Generate random colors for each square
colors = np.random.randint(
0, 256, (y_squares, x_squares, channels), dtype=np.uint8
)
# Expand the mask and colors to the size of the image array
mask_expanded = np.repeat(
np.repeat(noise_mask, self.square_size, axis=0), self.square_size, axis=1
)
colors_expanded = np.repeat(
np.repeat(colors, self.square_size, axis=0), self.square_size, axis=1
)
# Reshape `mask_expanded` to add the color channel dimension
mask_expanded = np.repeat(mask_expanded[:, :, np.newaxis], channels, axis=2)
# Apply colors where the mask is true using element-wise assignment
image_array = np.where(mask_expanded, colors_expanded, image_array)
# Convert back to a PIL image
return self.image.fromarray(image_array)
class Oldify(ImageAugmentor):
noise_strength: int = 30
tint_strength: float = 0.4 # Percentage of squares to be randomly colored
def process_image(self, image):
# Convert to a numpy array for manipulation
image_array = np.array(image)
# Step 1: Add a slight yellowish tint
yellow_tint = np.array([255, 228, 170], dtype=np.uint8) # Aged paper-like color
tinted_image_array = (
image_array * (1 - self.tint_strength) + yellow_tint * self.tint_strength
).astype(np.uint8)
# Step 2: Add noise for a "film grain" effect
noise = np.random.normal(0, self.noise_strength, image_array.shape).astype(
np.int16
)
noisy_image_array = np.clip(tinted_image_array + noise, 0, 255).astype(np.uint8)
# Step 3: Convert back to a PIL Image for additional processing
old_image = self.image.fromarray(noisy_image_array)
# Step 4: Apply a slight blur to mimic an older lens or slight wear
old_image = old_image.filter(self.filter.GaussianBlur(radius=1))
# Step 5: Adjust contrast and brightness to give it a "faded" look
enhancer = self.enhance.Contrast(old_image)
old_image = enhancer.enhance(0.6) # Lower contrast
enhancer = self.enhance.Brightness(old_image)
return enhancer.enhance(1.2) # Slightly increased brightness
class ToRGB(ImageFieldOperator):
def process_image(self, image):
return image.convert("RGB")