File size: 9,950 Bytes
7cdc7d0 d08fbc6 7cdc7d0 fe70438 d08fbc6 7cdc7d0 fe70438 7cdc7d0 fe70438 d08fbc6 fe70438 88c61d3 fe70438 88c61d3 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 d08fbc6 88c61d3 fe70438 88c61d3 d08fbc6 d443ad5 88c61d3 d443ad5 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 95c127f fe70438 88c61d3 fe70438 357b16c fe70438 24df49f fe70438 24df49f fe70438 95c127f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import base64
import io
import re
from abc import abstractmethod
from typing import Any, Dict, Tuple
import numpy as np
from datasets import Image as DatasetsImage
from .augmentors import TaskInputsAugmentor
from .dict_utils import dict_get
from .operator import PackageRequirementsMixin
from .operators import FieldOperator, InstanceFieldOperator
from .settings_utils import get_constants
from .type_utils import isoftype
from .types import Image
constants = get_constants()
datasets_image = DatasetsImage()
def _image_to_bytes(image, format="JPEG"):
import base64
with io.BytesIO() as buffer:
image.save(buffer, format=format)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
class ImageDataString(str):
def __repr__(self) -> str:
if len(self) > 30:
return '<ImageDataString "' + self[:30] + '...">'
return super().__repr__()
def image_to_data_url(image: Image, default_format="JPEG"):
"""Convert an image to a data URL.
https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data
"""
image_format = image["format"] if image["format"] else default_format
base64_image = _image_to_bytes(image["image"], format=image_format.upper())
return ImageDataString(f"data:image/{image_format.lower()};base64,{base64_image}")
def _bytes_to_image(b64_string):
import base64
import io
from PIL import Image
# Decode the base64-encoded string
decoded_bytes = base64.b64decode(b64_string)
# Open the image from the decoded bytes
return Image.open(io.BytesIO(decoded_bytes))
def data_url_to_image(data_url: str):
import re
# Verify that the string is a data URL
if not data_url.startswith("data:"):
raise ValueError("Invalid data URL")
# Extract the base64 data using a regular expression
match = re.match(r"data:image/(.*?);base64,(.*)", data_url)
if not match:
raise ValueError("Invalid data URL format")
# Extract image format and base64 data
image_format, b64_data = match.groups()
# Use _bytes_to_image to convert base64 data to an image
return _bytes_to_image(b64_data)
class PillowMixin(PackageRequirementsMixin):
_requirements_list = {"PIL": "pip install pillow"}
def prepare(self):
super().prepare()
import PIL
from PIL import Image, ImageEnhance, ImageFilter
self.pil = PIL
self.image = Image
self.enhance = ImageEnhance
self.filter = ImageFilter
def extract_images(instance):
regex = r"<" + f"{constants.image_tag}" + r'\s+src=["\'](.*?)["\']'
image_sources = re.findall(regex, instance["source"])
images = []
for image_source in image_sources:
image = dict_get(instance, image_source)
images.append(image)
return images
class EncodeImageToString(FieldOperator):
image_format: str = "JPEG"
def encode_image_to_base64(self, image):
buffer = io.BytesIO()
image.save(buffer, format=self.image_format)
return ImageDataString(base64.b64encode(buffer.getvalue()).decode("utf-8"))
def process_value(self, value: Any) -> Any:
return {"image": self.encode_image_to_base64(value)}
class DecodeImage(FieldOperator, PillowMixin):
def process_value(self, value: str) -> Any:
image_data = base64.b64decode(value)
return self.image.open(io.BytesIO(image_data))
class ToImage(InstanceFieldOperator):
def process_instance_value(self, value: Any, instance: Dict[str, Any]) -> Image:
return {
"image": value,
"format": value.format if value.format is not None else "JPEG",
}
class ImageFieldOperator(FieldOperator, PillowMixin):
@abstractmethod
def process_image(self, image: Any):
pass
def process_value(self, value: Image) -> Any:
if not isinstance(value["image"], self.image.Image):
raise ValueError(f"ImageFieldOperator requires image, got {type(value)}.")
value["image"] = self.process_image(value["image"])
return value
class ImageAugmentor(TaskInputsAugmentor, PillowMixin):
augmented_type: object = Image
@abstractmethod
def process_image(self, image: Any):
pass
def process_value(self, value: Image) -> Any:
if not isoftype(value, Image):
return value
value["image"] = self.process_image(value["image"])
return value
class GrayScale(ImageAugmentor):
def process_image(self, image):
# Convert the image to grayscale
grayscale_image = image.convert("L")
# Convert the grayscale image to a NumPy array
grayscale_array = np.array(grayscale_image)
# Add a dummy channel dimension to make it (height, width, 1)
grayscale_array = np.expand_dims(grayscale_array, axis=-1)
# Repeat the channel to have (height, width, 3) if needed for compatibility
grayscale_array = np.repeat(grayscale_array, 3, axis=-1)
# Convert back to a PIL image with 3 channels
return self.image.fromarray(grayscale_array)
class GridLines(ImageAugmentor):
"""A class that overlays a fixed number of evenly spaced horizontal and vertical lines on an image.
Args:
num_lines (int):
The number of horizontal and vertical lines to add.
line_thickness (int):
Thickness of each line in pixels.
line_color (Tuple[int, int, int]):
RGB color of the grid lines.
Methods:
process_image(image): Adds grid lines to the provided image and returns the modified image.
"""
num_lines: int = 128
line_thickness: int = 1
line_color: Tuple[int, int, int] = (255, 255, 255)
def process_image(self, image):
image_array = np.array(image)
# Determine image dimensions
height, width, _ = image_array.shape
# Calculate spacing for the lines based on image size and number of lines
horizontal_spacing = height // (self.num_lines + 1)
vertical_spacing = width // (self.num_lines + 1)
# Add horizontal lines
for i in range(1, self.num_lines + 1):
y = i * horizontal_spacing
image_array[y : y + self.line_thickness, :, :] = self.line_color
# Add vertical lines
for i in range(1, self.num_lines + 1):
x = i * vertical_spacing
image_array[:, x : x + self.line_thickness, :] = self.line_color
# Convert back to a PIL image
return self.image.fromarray(image_array)
class PixelNoise(ImageAugmentor):
"""A class that overlays a mask of randomly colored nxn squares across an image based on a specified noise rate.
Args:
square_size (int):
Size of each square in pixels.
noise_rate (float):
Proportion of the image that should be affected by noise (0 to 1).
Methods:
process_image(image):
Adds the random square mask to the provided image and returns the modified image.
"""
square_size: int = 1
noise_rate: float = 0.3 # Percentage of squares to be randomly colored
def process_image(self, image):
image_array = np.array(image)
height, width, channels = image_array.shape
# Calculate grid dimensions
y_squares = height // self.square_size
x_squares = width // self.square_size
# Create a grid indicating where to apply the mask
noise_mask = np.random.rand(y_squares, x_squares) < self.noise_rate
# Generate random colors for each square
colors = np.random.randint(
0, 256, (y_squares, x_squares, channels), dtype=np.uint8
)
# Expand the mask and colors to the size of the image array
mask_expanded = np.repeat(
np.repeat(noise_mask, self.square_size, axis=0), self.square_size, axis=1
)
colors_expanded = np.repeat(
np.repeat(colors, self.square_size, axis=0), self.square_size, axis=1
)
# Reshape `mask_expanded` to add the color channel dimension
mask_expanded = np.repeat(mask_expanded[:, :, np.newaxis], channels, axis=2)
# Apply colors where the mask is true using element-wise assignment
image_array = np.where(mask_expanded, colors_expanded, image_array)
# Convert back to a PIL image
return self.image.fromarray(image_array)
class Oldify(ImageAugmentor):
noise_strength: int = 30
tint_strength: float = 0.4 # Percentage of squares to be randomly colored
def process_image(self, image):
# Convert to a numpy array for manipulation
image_array = np.array(image)
# Step 1: Add a slight yellowish tint
yellow_tint = np.array([255, 228, 170], dtype=np.uint8) # Aged paper-like color
tinted_image_array = (
image_array * (1 - self.tint_strength) + yellow_tint * self.tint_strength
).astype(np.uint8)
# Step 2: Add noise for a "film grain" effect
noise = np.random.normal(0, self.noise_strength, image_array.shape).astype(
np.int16
)
noisy_image_array = np.clip(tinted_image_array + noise, 0, 255).astype(np.uint8)
# Step 3: Convert back to a PIL Image for additional processing
old_image = self.image.fromarray(noisy_image_array)
# Step 4: Apply a slight blur to mimic an older lens or slight wear
old_image = old_image.filter(self.filter.GaussianBlur(radius=1))
# Step 5: Adjust contrast and brightness to give it a "faded" look
enhancer = self.enhance.Contrast(old_image)
old_image = enhancer.enhance(0.6) # Lower contrast
enhancer = self.enhance.Brightness(old_image)
return enhancer.enhance(1.2) # Slightly increased brightness
class ToRGB(ImageFieldOperator):
def process_image(self, image):
return image.convert("RGB")
|