File size: 90,545 Bytes
dcd3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08fbc6
dcd3b86
d08fbc6
dcd3b86
058c80a
dcd3b86
058c80a
45dfa28
058c80a
 
 
 
 
dcd3b86
d08fbc6
dcd3b86
 
 
 
d08fbc6
dcd3b86
0a1b314
dcd3b86
 
0a1b314
dcd3b86
8fecbbd
d08fbc6
74ba290
8fecbbd
b462f85
b7c39fe
8fecbbd
dcd3b86
c9c2d08
 
 
 
 
 
 
b9d0035
c9c2d08
 
 
 
b7c39fe
74ba290
 
778ad61
d08fbc6
058c80a
8fecbbd
24df49f
778ad61
0a1b314
b7c39fe
778ad61
8fecbbd
649f9a8
74ba290
778ad61
74ba290
8fecbbd
b7c39fe
0a1b314
778ad61
dcd3b86
cc5f321
24df49f
8fecbbd
dcd3b86
cc5f321
fe70438
cc5f321
 
 
 
 
 
778ad61
1f5859d
 
778ad61
 
dcd3b86
 
 
 
 
d292ceb
 
8fecbbd
778ad61
 
 
 
74ba290
dcd3b86
 
 
 
 
 
 
 
 
 
 
 
 
f60252a
 
74ba290
f60252a
 
 
0a1b314
dcd3b86
8fecbbd
24df49f
8fecbbd
 
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78663de
 
357b16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d292ceb
8fecbbd
778ad61
 
78663de
778ad61
 
 
 
78663de
 
 
 
 
 
 
 
 
 
 
8fecbbd
cf45ebb
8fecbbd
78663de
 
5ba849c
78663de
dcd3b86
 
 
 
 
 
 
 
 
 
78663de
8fecbbd
778ad61
dcd3b86
 
cc5f321
 
 
dcd3b86
5ba849c
dcd3b86
 
 
778ad61
0a1b314
78663de
d292ceb
 
 
 
 
8fecbbd
d292ceb
 
8fecbbd
78663de
 
 
d292ceb
778ad61
 
058c80a
357b16c
d292ceb
 
357b16c
 
78663de
 
 
357b16c
 
78663de
357b16c
 
78663de
357b16c
 
78663de
357b16c
 
d292ceb
8fecbbd
778ad61
d08fbc6
8fecbbd
 
d08fbc6
 
 
 
 
 
78663de
 
 
cf45ebb
8fecbbd
cc5f321
cf45ebb
8fecbbd
 
 
9f47dec
058c80a
 
 
 
0a1b314
dcd3b86
3d43021
 
78663de
3d43021
 
 
 
78663de
 
 
 
 
3d43021
 
 
100c2eb
 
 
 
 
 
 
 
 
f6ebc4f
 
 
 
100c2eb
 
 
 
 
 
 
 
 
cc5f321
 
 
 
 
 
 
0a1b314
dcd3b86
78663de
8fecbbd
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357b16c
 
 
dcd3b86
8fecbbd
 
 
 
dcd3b86
d08fbc6
8fecbbd
b868ef2
 
cc5f321
8fecbbd
 
 
d08fbc6
 
 
8fecbbd
d08fbc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78663de
 
 
8fecbbd
 
 
 
 
dcd3b86
d08fbc6
 
 
78663de
dcd3b86
fe70438
dcd3b86
 
 
460af71
dcd3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fecbbd
 
460af71
8fecbbd
 
78663de
 
 
d08fbc6
8fecbbd
c9c2d08
b868ef2
 
 
cc5f321
 
b868ef2
cc5f321
 
9245edf
cc5f321
78663de
 
5ba849c
78663de
 
 
460af71
 
 
 
78663de
460af71
78663de
 
5ba849c
78663de
 
 
 
 
 
 
8fecbbd
 
 
460af71
 
 
 
 
 
 
 
 
cc5f321
 
 
 
 
 
 
d08fbc6
dcd3b86
 
cf45ebb
 
dcd3b86
 
d08fbc6
dcd3b86
 
d08fbc6
dcd3b86
 
d08fbc6
dcd3b86
 
d08fbc6
dcd3b86
 
 
c9c2d08
 
 
 
78663de
 
 
c9c2d08
dcd3b86
 
 
 
e81c49a
dcd3b86
c9c2d08
 
 
d08fbc6
 
 
 
 
c9c2d08
dcd3b86
78663de
 
dcd3b86
c9c2d08
78663de
 
 
 
 
 
 
 
dcd3b86
78663de
c9c2d08
 
dcd3b86
 
c9c2d08
 
 
8fecbbd
78663de
 
8fecbbd
 
 
 
 
 
 
 
 
 
0a1b314
78663de
 
 
 
 
357b16c
 
78663de
 
357b16c
 
78663de
357b16c
 
78663de
357b16c
 
78663de
 
 
c9c2d08
 
 
 
 
2ec6f71
 
 
 
 
 
 
 
 
78663de
c9c2d08
 
460af71
 
 
78663de
460af71
78663de
 
 
 
c9c2d08
45dfa28
78663de
 
 
c9c2d08
 
 
 
 
2ec6f71
c9c2d08
78663de
 
 
c9c2d08
 
 
 
 
 
 
 
 
0a1b314
78663de
c9c2d08
78663de
c9c2d08
d08fbc6
 
 
 
 
 
 
c9c2d08
78663de
 
 
c9c2d08
78663de
cf45ebb
cc5f321
 
 
c9c2d08
 
 
0a1b314
357b16c
dcd3b86
 
 
8fecbbd
357b16c
 
dcd3b86
 
 
 
8fecbbd
 
d08fbc6
 
 
 
 
 
 
778ad61
78663de
 
 
8fecbbd
78663de
cf45ebb
8fecbbd
 
 
 
cc5f321
d292ceb
 
 
0a1b314
b462f85
 
357b16c
 
b462f85
 
357b16c
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
dcd3b86
8fecbbd
 
 
 
d08fbc6
 
 
 
 
 
 
d292ceb
78663de
 
 
cf45ebb
 
8fecbbd
d292ceb
778ad61
 
0a1b314
dcd3b86
8fecbbd
 
 
 
d08fbc6
 
 
 
 
 
 
8fecbbd
 
 
 
 
78663de
 
 
cf45ebb
 
8fecbbd
 
 
 
460af71
24df49f
649f9a8
24df49f
649f9a8
24df49f
 
 
 
 
 
649f9a8
 
 
460af71
649f9a8
 
 
460af71
 
649f9a8
 
 
 
 
 
460af71
 
649f9a8
 
 
460af71
649f9a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100c2eb
dcd3b86
8fecbbd
dcd3b86
8fecbbd
dcd3b86
 
 
357b16c
dcd3b86
357b16c
dcd3b86
 
cf45ebb
357b16c
dcd3b86
 
 
8fecbbd
 
 
d08fbc6
45dfa28
 
cc5f321
 
 
 
 
9f47dec
100c2eb
 
 
 
45dfa28
 
 
 
 
 
 
8fecbbd
 
0a1b314
dcd3b86
 
8fecbbd
 
78663de
 
 
8fecbbd
 
 
 
d08fbc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
78663de
8fecbbd
 
24df49f
 
 
 
 
 
 
dcd3b86
357b16c
 
 
 
 
 
 
 
 
 
 
dcd3b86
8fecbbd
 
 
 
357b16c
dcd3b86
 
 
 
8fecbbd
357b16c
 
 
 
 
 
8fecbbd
 
 
78663de
8fecbbd
 
 
78663de
8fecbbd
 
 
dcd3b86
8fecbbd
78663de
 
 
 
cf45ebb
dcd3b86
 
 
5ba849c
78663de
8fecbbd
78663de
cf45ebb
 
8fecbbd
 
 
0a1b314
dcd3b86
8fecbbd
dcd3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fecbbd
 
 
dcd3b86
 
 
 
 
 
 
 
 
 
 
 
 
8fecbbd
78663de
 
 
dcd3b86
8fecbbd
 
778ad61
78663de
d292ceb
 
 
 
8fecbbd
fe70438
778ad61
 
 
fe70438
 
 
 
778ad61
 
0a1b314
78663de
d292ceb
 
649f9a8
 
 
 
d292ceb
8fecbbd
dcd3b86
649f9a8
 
 
 
 
f60252a
dcd3b86
 
778ad61
 
 
78663de
 
 
778ad61
 
 
 
dcd3b86
778ad61
 
 
 
649f9a8
778ad61
649f9a8
 
d08fbc6
778ad61
 
0a1b314
88f4dd2
dcd3b86
88f4dd2
78663de
 
88f4dd2
357b16c
88f4dd2
357b16c
dcd3b86
 
 
357b16c
 
 
 
 
 
88f4dd2
dcd3b86
d292ceb
78663de
dcd3b86
 
 
 
 
 
 
 
 
 
 
 
 
78663de
 
dcd3b86
78663de
dcd3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88f4dd2
 
 
dcd3b86
5ba849c
88f4dd2
dcd3b86
88f4dd2
dcd3b86
 
88f4dd2
dcd3b86
 
 
 
78663de
dcd3b86
78663de
88f4dd2
dcd3b86
 
 
 
100c2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ba849c
100c2eb
 
 
 
 
5ba849c
100c2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f5859d
 
 
 
 
 
 
 
 
 
 
 
 
e496326
45dfa28
e496326
1f5859d
 
 
7cdc7d0
1f5859d
 
058c80a
 
1f5859d
 
 
0a1b314
dcd3b86
 
 
 
 
24df49f
 
 
 
 
 
dcd3b86
 
24df49f
 
 
 
 
dcd3b86
 
 
 
 
 
 
1f5859d
dcd3b86
78663de
 
dcd3b86
 
 
 
 
 
0a1b314
1f5859d
dcd3b86
 
 
 
1f5859d
dcd3b86
1f5859d
dcd3b86
 
 
1f5859d
dcd3b86
 
 
1f5859d
dcd3b86
 
 
 
 
 
 
 
 
1f5859d
dcd3b86
 
78663de
dcd3b86
78663de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd3b86
78663de
 
 
dcd3b86
78663de
 
 
 
 
dcd3b86
78663de
 
 
dcd3b86
78663de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649f9a8
78663de
 
 
 
 
 
 
 
 
 
 
649f9a8
 
78663de
649f9a8
78663de
649f9a8
78663de
 
649f9a8
460af71
78663de
 
649f9a8
 
 
78663de
 
 
 
 
 
 
649f9a8
78663de
 
 
 
 
 
 
058c80a
dcd3b86
78663de
 
dcd3b86
78663de
 
778ad61
dcd3b86
 
 
778ad61
 
78663de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd3b86
78663de
 
 
 
 
 
 
 
 
dcd3b86
d292ceb
78663de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d292ceb
 
 
 
8fecbbd
778ad61
 
 
 
 
78663de
 
778ad61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78663de
d292ceb
 
 
 
8fecbbd
778ad61
 
 
 
 
 
 
 
 
 
78663de
dcd3b86
 
78663de
 
 
 
778ad61
 
 
 
 
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ba849c
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
78663de
d292ceb
 
 
 
 
8fecbbd
778ad61
 
 
78663de
dcd3b86
778ad61
 
 
 
 
 
 
 
 
 
78663de
 
0a1b314
8fecbbd
d08fbc6
778ad61
 
 
 
b9d0035
 
 
 
 
 
0a1b314
78663de
 
 
 
 
d292ceb
78663de
 
 
 
 
d443ad5
78663de
24df49f
 
cc5f321
24df49f
78663de
 
 
 
 
 
 
 
 
 
d443ad5
 
 
 
 
 
 
 
 
 
 
 
b9d0035
 
 
78663de
 
 
 
d443ad5
78663de
b9d0035
 
 
 
24df49f
 
 
cc5f321
24df49f
b9d0035
24df49f
b9d0035
 
24df49f
 
 
78663de
24df49f
78663de
 
778ad61
78663de
d292ceb
 
 
 
 
 
8fecbbd
78663de
778ad61
 
 
 
b462f85
778ad61
78663de
 
 
 
 
778ad61
 
78663de
 
100c2eb
78663de
 
 
 
d292ceb
8fecbbd
d292ceb
78663de
d292ceb
dcd3b86
d292ceb
 
8fecbbd
dcd3b86
 
 
 
 
 
78663de
dcd3b86
8fecbbd
 
 
59be457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
dcd3b86
 
 
 
8fecbbd
 
 
dcd3b86
357b16c
 
 
 
 
dcd3b86
357b16c
 
dcd3b86
8fecbbd
 
 
 
 
 
 
 
78663de
 
 
 
cf45ebb
e81c49a
8fecbbd
 
 
 
 
 
e81c49a
 
78663de
e81c49a
 
 
cf45ebb
 
 
 
78663de
8fecbbd
 
341b917
 
0a1b314
dcd3b86
 
 
 
 
 
24df49f
 
 
 
dcd3b86
 
24df49f
 
 
dcd3b86
 
341b917
dcd3b86
341b917
78663de
341b917
 
 
 
 
 
82055e6
78663de
341b917
dcd3b86
 
 
 
 
24df49f
 
 
 
 
341b917
 
24df49f
 
dcd3b86
 
24df49f
 
 
341b917
 
 
 
 
cf45ebb
341b917
78663de
cf45ebb
341b917
 
 
 
78663de
 
 
341b917
 
 
 
78663de
 
 
341b917
cf45ebb
341b917
 
 
 
 
 
 
 
82055e6
 
 
 
0a1b314
 
 
24df49f
 
 
0a1b314
 
24df49f
 
 
 
 
 
 
0a1b314
 
24df49f
 
0a1b314
 
24df49f
 
0a1b314
24df49f
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341b917
dcd3b86
 
 
24df49f
 
 
 
 
 
dcd3b86
 
 
24df49f
 
 
 
dcd3b86
 
341b917
dcd3b86
341b917
 
 
78663de
cf45ebb
341b917
 
 
 
74ba290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24df49f
 
 
 
 
74ba290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24df49f
 
 
 
 
74ba290
 
 
 
 
 
 
 
e81c49a
 
0a1b314
e81c49a
 
24df49f
 
 
e81c49a
 
 
 
 
 
 
 
 
 
 
cc5f321
e81c49a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
 
 
 
 
 
 
 
 
 
 
357b16c
fe70438
357b16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d0035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
"""This section describes unitxt operators.

Operators: Building Blocks of Unitxt Processing Pipelines
==============================================================

Within the Unitxt framework, operators serve as the foundational elements used to assemble processing pipelines.
Each operator is designed to perform specific manipulations on dictionary structures within a stream.
These operators are callable entities that receive a MultiStream as input.
The output is a MultiStream, augmented with the operator's manipulations, which are then systematically applied to each instance in the stream when pulled.

Creating Custom Operators
-------------------------------
To enhance the functionality of Unitxt, users are encouraged to develop custom operators.
This can be achieved by inheriting from any of the existing operators listed below or from one of the fundamental :class:`base operators<unitxt.operator>`.
The primary task in any operator development is to implement the `process` function, which defines the unique manipulations the operator will perform.

General or Specialized Operators
--------------------------------
Some operators are specialized in specific data or specific operations such as:

- :class:`loaders<unitxt.loaders>` for accessing data from various sources.
- :class:`splitters<unitxt.splitters>` for fixing data splits.
- :class:`stream_operators<unitxt.stream_operators>` for changing joining and mixing streams.
- :class:`struct_data_operators<unitxt.struct_data_operators>` for structured data operators.
- :class:`collections_operators<unitxt.collections_operators>` for handling collections such as lists and dictionaries.
- :class:`dialog_operators<unitxt.dialog_operators>` for handling dialogs.
- :class:`string_operators<unitxt.string_operators>` for handling strings.
- :class:`span_labeling_operators<unitxt.span_labeling_operators>` for handling strings.
- :class:`fusion<unitxt.fusion>` for fusing and mixing datasets.

Other specialized operators are used by unitxt internally:

- :class:`templates<unitxt.templates>` for verbalizing data examples.
- :class:`formats<unitxt.formats>` for preparing data for models.

The rest of this section is dedicated to general operators.

General Operators List:
------------------------
"""

import operator
import uuid
import warnings
import zipfile
from abc import abstractmethod
from collections import Counter, defaultdict
from dataclasses import field
from itertools import zip_longest
from random import Random
from typing import (
    Any,
    Callable,
    Dict,
    Generator,
    Iterable,
    List,
    Literal,
    Optional,
    Tuple,
    Union,
)

import requests

from .artifact import Artifact, fetch_artifact
from .dataclass import NonPositionalField, OptionalField
from .deprecation_utils import deprecation
from .dict_utils import dict_delete, dict_get, dict_set, is_subpath
from .generator_utils import ReusableGenerator
from .operator import (
    InstanceOperator,
    MultiStream,
    MultiStreamOperator,
    PagedStreamOperator,
    SequentialOperator,
    SideEffectOperator,
    SingleStreamReducer,
    SourceOperator,
    StreamingOperator,
    StreamInitializerOperator,
    StreamOperator,
)
from .random_utils import new_random_generator
from .settings_utils import get_settings
from .stream import DynamicStream, Stream
from .text_utils import nested_tuple_to_string
from .type_utils import isoftype
from .utils import (
    LRUCache,
    deep_copy,
    flatten_dict,
    recursive_copy,
    recursive_shallow_copy,
    shallow_copy,
)

settings = get_settings()


class FromIterables(StreamInitializerOperator):
    """Creates a MultiStream from a dict of named iterables.

    Example:
        operator = FromIterables()
        ms = operator.process(iterables)

    """

    def process(self, iterables: Dict[str, Iterable]) -> MultiStream:
        return MultiStream.from_iterables(iterables)


class IterableSource(SourceOperator):
    """Creates a MultiStream from a dict of named iterables.

    It is a callable.

    Args:
        iterables (Dict[str, Iterable]): A dictionary mapping stream names to iterables.

    Example:
        operator =  IterableSource(input_dict)
        ms = operator()

    """

    iterables: Dict[str, Iterable]

    def process(self) -> MultiStream:
        return MultiStream.from_iterables(self.iterables)


class MapInstanceValues(InstanceOperator):
    """A class used to map instance values into other values.

    This class is a type of ``InstanceOperator``,
    it maps values of instances in a stream using predefined mappers.

    Args:
        mappers (Dict[str, Dict[str, Any]]):
            The mappers to use for mapping instance values.
            Keys are the names of the fields to undergo mapping, and values are dictionaries
            that define the mapping from old values to new values.
            Note that mapped values are defined by their string representation, so mapped values
            are converted to strings before being looked up in the mappers.
        strict (bool):
            If True, the mapping is applied strictly. That means if a value
            does not exist in the mapper, it will raise a KeyError. If False, values
            that are not present in the mapper are kept as they are.
        process_every_value (bool):
            If True, all fields to be mapped should be lists, and the mapping
            is to be applied to their individual elements.
            If False, mapping is only applied to a field containing a single value.

    Examples:
        ``MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}})``
        replaces ``"1"`` with ``"hi"`` and ``"2"`` with ``"bye"`` in field ``"a"`` in all instances of all streams:
        instance ``{"a": 1, "b": 2}`` becomes ``{"a": "hi", "b": 2}``. Note that the value of ``"b"`` remained intact,
        since field-name ``"b"`` does not participate in the mappers, and that ``1`` was casted to ``"1"`` before looked
        up in the mapper of ``"a"``.

        ``MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, process_every_value=True)``:
        Assuming field ``"a"`` is a list of values, potentially including ``"1"``-s and ``"2"``-s, this replaces
        each such ``"1"`` with ``"hi"`` and ``"2"`` -- with ``"bye"`` in all instances of all streams:
        instance ``{"a": ["1", "2"], "b": 2}`` becomes ``{"a": ["hi", "bye"], "b": 2}``.

        ``MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, strict=True)``:
        To ensure that all values of field ``"a"`` are mapped in every instance, use ``strict=True``.
        Input instance ``{"a":"3", "b": 2}`` will raise an exception per the above call,
        because ``"3"`` is not a key in the mapper of ``"a"``.

        ``MapInstanceValues(mappers={"a": {str([1,2,3,4]): "All", str([]): "None"}}, strict=True)``
        replaces a list ``[1,2,3,4]`` with the string ``"All"`` and an empty list by string ``"None"``.

    """

    mappers: Dict[str, Dict[str, str]]
    strict: bool = True
    process_every_value: bool = False

    def verify(self):
        # make sure the mappers are valid
        for key, mapper in self.mappers.items():
            assert isinstance(
                mapper, dict
            ), f"Mapper for given field {key} should be a dict, got {type(mapper)}"
            for k in mapper.keys():
                assert isinstance(
                    k, str
                ), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}'

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for key, mapper in self.mappers.items():
            value = dict_get(instance, key)
            if value is not None:
                if (self.process_every_value is True) and (not isinstance(value, list)):
                    raise ValueError(
                        f"'process_every_field' == True is allowed only for fields whose values are lists, but value of field '{key}' is '{value}'"
                    )
                if isinstance(value, list) and self.process_every_value:
                    for i, val in enumerate(value):
                        value[i] = self.get_mapped_value(instance, key, mapper, val)
                else:
                    value = self.get_mapped_value(instance, key, mapper, value)
                dict_set(
                    instance,
                    key,
                    value,
                )

        return instance

    def get_mapped_value(self, instance, key, mapper, val):
        val_as_str = str(val)  # make sure the value is a string
        if val_as_str in mapper:
            return recursive_copy(mapper[val_as_str])
        if self.strict:
            raise KeyError(
                f"value '{val_as_str}', the string representation of the value in field '{key}', is not found in mapper '{mapper}'"
            )
        return val


class FlattenInstances(InstanceOperator):
    """Flattens each instance in a stream, making nested dictionary entries into top-level entries.

    Args:
        parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string.
        sep (str): The separator to use when concatenating nested keys. Defaults to "_".
    """

    parent_key: str = ""
    sep: str = "_"

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep)


class Set(InstanceOperator):
    """Sets specified fields in each instance, in a given stream or all streams (default), with specified values. If fields exist, updates them, if do not exist -- adds them.

    Args:
        fields (Dict[str, object]): The fields to add to each instance. Use '/' to access inner fields

        use_deepcopy (bool) : Deep copy the input value to avoid later modifications

    Examples:
        # Set a value of a list consisting of "positive" and "negative" do field "classes" to each and every instance of all streams
        ``Set(fields={"classes": ["positive","negatives"]})``

        # In each and every instance of all streams, field "span" is to become a dictionary containing a field "start", in which the value 0 is to be set
        ``Set(fields={"span/start": 0}``

        # In all instances of stream "train" only, Set field "classes" to have the value of a list consisting of "positive" and "negative"
        ``Set(fields={"classes": ["positive","negatives"], apply_to_stream=["train"]})``

        # Set field "classes" to have the value of a given list, preventing modification of original list from changing the instance.
        ``Set(fields={"classes": alist}), use_deepcopy=True)``  if now alist is modified, still the instances remain intact.
    """

    fields: Dict[str, object]
    use_query: Optional[bool] = None
    use_deepcopy: bool = False

    def verify(self):
        super().verify()
        if self.use_query is not None:
            depr_message = "Field 'use_query' is deprecated. From now on, default behavior is compatible to use_query=True. Please remove this field from your code."
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for key, value in self.fields.items():
            if self.use_deepcopy:
                value = deep_copy(value)
            dict_set(instance, key, value)
        return instance


@deprecation(version="2.0.0", alternative=Set)
class AddFields(Set):
    pass


class RemoveFields(InstanceOperator):
    """Remove specified fields from each instance in a stream.

    Args:
        fields (List[str]): The fields to remove from each instance.
    """

    fields: List[str]

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for field_name in self.fields:
            del instance[field_name]
        return instance


class SelectFields(InstanceOperator):
    """Keep only specified fields from each instance in a stream.

    Args:
        fields (List[str]): The fields to keep from each instance.
    """

    fields: List[str]

    def prepare(self):
        super().prepare()
        self.fields.extend(["data_classification_policy", "recipe_metadata"])

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        new_instance = {}
        for selected_field in self.fields:
            new_instance[selected_field] = instance[selected_field]
        return new_instance


class DefaultPlaceHolder:
    pass


default_place_holder = DefaultPlaceHolder()


class InstanceFieldOperator(InstanceOperator):
    """A general stream instance operator that processes the values of a field (or multiple ones).

    Args:
        field (Optional[str]):
            The field to process, if only a single one is passed. Defaults to None
        to_field (Optional[str]):
            Field name to save result into, if only one field is processed, if None is passed the
            operation would happen in-place and its result would replace the value of ``field``. Defaults to None
        field_to_field (Optional[Union[List[List[str]], Dict[str, str]]]):
            Mapping from names of fields to process,
            to names of fields to save the results into. Inner List, if used, should be of length 2.
            A field is processed by feeding its value into method ``process_value`` and storing the result in ``to_field`` that
            is mapped to the field. When the type of argument ``field_to_field`` is List, the order by which the fields are processed is their order
            in the (outer) List. But when the type of argument ``field_to_field`` is Dict, there is no uniquely determined
            order. The end result might depend on that order if either (1) two different fields are mapped to the same
            to_field, or (2) a field shows both as a key and as a value in different mappings.
            The operator throws an AssertionError in either of these cases. ``field_to_field``
            defaults to None.
        process_every_value (bool):
            Processes the values in a list instead of the list as a value, similar to python's ``*var``. Defaults to False

    Note: if ``field`` and ``to_field`` (or both members of a pair in ``field_to_field`` ) are equal (or share a common
    prefix if ``field`` and ``to_field`` contain a / ), then the result of the operation is saved within ``field`` .

    """

    field: Optional[str] = None
    to_field: Optional[str] = None
    field_to_field: Optional[Union[List[List[str]], Dict[str, str]]] = None
    use_query: Optional[bool] = None
    process_every_value: bool = False
    get_default: Any = None
    not_exist_ok: bool = False
    not_exist_do_nothing: bool = False

    def verify(self):
        super().verify()
        if self.use_query is not None:
            depr_message = "Field 'use_query' is deprecated. From now on, default behavior is compatible to use_query=True. Please remove this field from your code."
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)

    def verify_field_definition(self):
        if hasattr(self, "_field_to_field") and self._field_to_field is not None:
            return
        assert (
            (self.field is None) != (self.field_to_field is None)
        ), "Must uniquely define the field to work on, through exactly one of either 'field' or 'field_to_field'"
        assert (
            self.to_field is None or self.field_to_field is None
        ), f"Can not apply operator to create both {self.to_field} and the to fields in the mapping {self.field_to_field}"

        if self.field_to_field is None:
            self._field_to_field = [
                (self.field, self.to_field if self.to_field is not None else self.field)
            ]
        else:
            self._field_to_field = (
                list(self.field_to_field.items())
                if isinstance(self.field_to_field, dict)
                else self.field_to_field
            )
        assert (
            self.field is not None or self.field_to_field is not None
        ), "Must supply a field to work on"
        assert (
            self.to_field is None or self.field_to_field is None
        ), f"Can not apply operator to create both on {self.to_field} and on the mapping from fields to fields {self.field_to_field}"
        assert (
            self.field is None or self.field_to_field is None
        ), f"Can not apply operator both on {self.field} and on the from fields in the mapping {self.field_to_field}"
        assert (
            self._field_to_field is not None
        ), f"the from and to fields must be defined or implied from the other inputs got: {self._field_to_field}"
        assert (
            len(self._field_to_field) > 0
        ), f"'input argument '{self.__class__.__name__}.field_to_field' should convey at least one field to process. Got {self.field_to_field}"
        # self._field_to_field is built explicitly by pairs, or copied from argument 'field_to_field'
        if self.field_to_field is None:
            return
        # for backward compatibility also allow list of tuples of two strings
        if isoftype(self.field_to_field, List[List[str]]) or isoftype(
            self.field_to_field, List[Tuple[str, str]]
        ):
            for pair in self._field_to_field:
                assert (
                    len(pair) == 2
                ), f"when 'field_to_field' is defined as a list of lists, the inner lists should all be of length 2. {self.field_to_field}"
            # order of field processing is uniquely determined by the input field_to_field when a list
            return
        if isoftype(self.field_to_field, Dict[str, str]):
            if len(self.field_to_field) < 2:
                return
            for ff, tt in self.field_to_field.items():
                for f, t in self.field_to_field.items():
                    if f == ff:
                        continue
                    assert (
                        t != ff
                    ), f"In input argument 'field_to_field': {self.field_to_field}, field {f} is mapped to field {t}, while the latter is mapped to {tt}. Whether {f} or {t} is processed first might impact end result."
                    assert (
                        tt != t
                    ), f"In input argument 'field_to_field': {self.field_to_field}, two different fields: {ff} and {f} are mapped to field {tt}. Whether {ff} or {f} is processed last might impact end result."
            return
        raise ValueError(
            "Input argument 'field_to_field': {self.field_to_field} is neither of type List{List[str]] nor of type Dict[str, str]."
        )

    @abstractmethod
    def process_instance_value(self, value: Any, instance: Dict[str, Any]):
        pass

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        self.verify_field_definition()
        for from_field, to_field in self._field_to_field:
            try:
                old_value = dict_get(
                    instance,
                    from_field,
                    default=default_place_holder,
                    not_exist_ok=self.not_exist_ok or self.not_exist_do_nothing,
                )
                if old_value is default_place_holder:
                    if self.not_exist_do_nothing:
                        continue
                    old_value = self.get_default
            except Exception as e:
                raise ValueError(
                    f"Failed to get '{from_field}' from instance due to the exception above."
                ) from e
            try:
                if self.process_every_value:
                    new_value = [
                        self.process_instance_value(value, instance)
                        for value in old_value
                    ]
                else:
                    new_value = self.process_instance_value(old_value, instance)
            except Exception as e:
                raise ValueError(
                    f"Failed to process field '{from_field}' from instance due to the exception above."
                ) from e
            dict_set(
                instance,
                to_field,
                new_value,
                not_exist_ok=True,
            )
        return instance


class FieldOperator(InstanceFieldOperator):
    def process_instance_value(self, value: Any, instance: Dict[str, Any]):
        return self.process_value(value)

    @abstractmethod
    def process_value(self, value: Any) -> Any:
        pass


class MapValues(FieldOperator):
    mapping: Dict[str, str]

    def process_value(self, value: Any) -> Any:
        return self.mapping[str(value)]


class Rename(FieldOperator):
    """Renames fields.

    Move value from one field to another, potentially, if field name contains a /, from one branch into another.
    Remove the from field, potentially part of it in case of / in from_field.

    Examples:
        Rename(field_to_field={"b": "c"})
        will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "c": 2}, {"a": 2, "c": 3}]

        Rename(field_to_field={"b": "c/d"})
        will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "c": {"d": 2}}, {"a": 2, "c": {"d": 3}}]

        Rename(field_to_field={"b": "b/d"})
        will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "b": {"d": 2}}, {"a": 2, "b": {"d": 3}}]

        Rename(field_to_field={"b/c/e": "b/d"})
        will change inputs [{"a": 1, "b": {"c": {"e": 2, "f": 20}}}] to [{"a": 1, "b": {"c": {"f": 20}, "d": 2}}]

    """

    def process_value(self, value: Any) -> Any:
        return value

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        res = super().process(instance=instance, stream_name=stream_name)
        for from_field, to_field in self._field_to_field:
            if (not is_subpath(from_field, to_field)) and (
                not is_subpath(to_field, from_field)
            ):
                dict_delete(res, from_field, remove_empty_ancestors=True)

        return res


@deprecation(version="2.0.0", alternative=Rename)
class RenameFields(Rename):
    pass


class AddConstant(FieldOperator):
    """Adds a constant, being argument 'add', to the processed value.

    Args:
        add: the constant to add.
    """

    add: Any

    def process_value(self, value: Any) -> Any:
        return self.add + value


class ShuffleFieldValues(FieldOperator):
    """Shuffles a list of values found in a field."""

    def process_value(self, value: Any) -> Any:
        res = list(value)
        random_generator = new_random_generator(sub_seed=res)
        random_generator.shuffle(res)
        return res


class JoinStr(FieldOperator):
    """Joins a list of strings (contents of a field), similar to str.join().

    Args:
        separator (str): text to put between values
    """

    separator: str = ","

    def process_value(self, value: Any) -> Any:
        return self.separator.join(str(x) for x in value)


class Apply(InstanceOperator):
    """A class used to apply a python function and store the result in a field.

    Args:
        function (str): name of function.
        to_field (str): the field to store the result

    any additional arguments are field names whose values will be passed directly to the function specified

    Examples:
    Store in field  "b" the uppercase string of the value in field "a":
    ``Apply("a", function=str.upper, to_field="b")``

    Dump the json representation of field "t" and store back in the same field:
    ``Apply("t", function=json.dumps, to_field="t")``

    Set the time in a field 'b':
    ``Apply(function=time.time, to_field="b")``

    """

    __allow_unexpected_arguments__ = True
    function: Callable = NonPositionalField(required=True)
    to_field: str = NonPositionalField(required=True)

    def function_to_str(self, function: Callable) -> str:
        parts = []

        if hasattr(function, "__module__"):
            parts.append(function.__module__)
        if hasattr(function, "__qualname__"):
            parts.append(function.__qualname__)
        else:
            parts.append(function.__name__)

        return ".".join(parts)

    def str_to_function(self, function_str: str) -> Callable:
        parts = function_str.split(".", 1)
        if len(parts) == 1:
            return __builtins__[parts[0]]

        module_name, function_name = parts
        if module_name in __builtins__:
            obj = __builtins__[module_name]
        elif module_name in globals():
            obj = globals()[module_name]
        else:
            obj = __import__(module_name)
        for part in function_name.split("."):
            obj = getattr(obj, part)
        return obj

    def prepare(self):
        super().prepare()
        if isinstance(self.function, str):
            self.function = self.str_to_function(self.function)
        self._init_dict["function"] = self.function_to_str(self.function)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        argv = [instance[arg] for arg in self._argv]
        kwargs = {key: instance[val] for key, val in self._kwargs}

        result = self.function(*argv, **kwargs)

        instance[self.to_field] = result
        return instance


class ListFieldValues(InstanceOperator):
    """Concatenates values of multiple fields into a list, and assigns it to a new field."""

    fields: List[str]
    to_field: str
    use_query: Optional[bool] = None

    def verify(self):
        super().verify()
        if self.use_query is not None:
            depr_message = "Field 'use_query' is deprecated. From now on, default behavior is compatible to use_query=True. Please remove this field from your code."
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        values = []
        for field_name in self.fields:
            values.append(dict_get(instance, field_name))

        dict_set(instance, self.to_field, values)

        return instance


class ZipFieldValues(InstanceOperator):
    """Zips values of multiple fields in a given instance, similar to ``list(zip(*fields))``.

    The value in each of the specified 'fields' is assumed to be a list. The lists from all 'fields'
    are zipped, and stored into 'to_field'.

    | If 'longest'=False, the length of the zipped result is determined by the shortest input value.
    | If 'longest'=True, the length of the zipped result is determined by the longest input, padding shorter inputs with None-s.

    """

    fields: List[str]
    to_field: str
    longest: bool = False
    use_query: Optional[bool] = None

    def verify(self):
        super().verify()
        if self.use_query is not None:
            depr_message = "Field 'use_query' is deprecated. From now on, default behavior is compatible to use_query=True. Please remove this field from your code."
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        values = []
        for field_name in self.fields:
            values.append(dict_get(instance, field_name))
        if self.longest:
            zipped = zip_longest(*values)
        else:
            zipped = zip(*values)
        dict_set(instance, self.to_field, list(zipped))
        return instance


class InterleaveListsToDialogOperator(InstanceOperator):
    """Interleaves two lists, one of user dialog turns and one of assistant dialog turns, into a single list of tuples, alternating between "user" and "assistant".

    The list of tuples if of format (role, turn_content), where the role label is specified by
    the 'user_role_label' and 'assistant_role_label' fields (default to "user" and "assistant").

    The user turns and assistant turns field are specified in the arguments.
    The value of each of the 'fields' is assumed to be a list.

    """

    user_turns_field: str
    assistant_turns_field: str
    user_role_label: str = "user"
    assistant_role_label: str = "assistant"
    to_field: str

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        user_turns = instance[self.user_turns_field]
        assistant_turns = instance[self.assistant_turns_field]

        assert (
            len(user_turns) == len(assistant_turns)
            or (len(user_turns) - len(assistant_turns) == 1)
        ), "user_turns must have either the same length as assistant_turns or one more turn."

        interleaved_dialog = []
        i, j = 0, 0  # Indices for the user and assistant lists
        # While either list has elements left, continue interleaving
        while i < len(user_turns) or j < len(assistant_turns):
            if i < len(user_turns):
                interleaved_dialog.append((self.user_role_label, user_turns[i]))
                i += 1
            if j < len(assistant_turns):
                interleaved_dialog.append(
                    (self.assistant_role_label, assistant_turns[j])
                )
                j += 1

        instance[self.to_field] = interleaved_dialog
        return instance


class IndexOf(InstanceOperator):
    """For a given instance, finds the offset of value of field 'index_of', within the value of field 'search_in'."""

    search_in: str
    index_of: str
    to_field: str
    use_query: Optional[bool] = None

    def verify(self):
        super().verify()
        if self.use_query is not None:
            depr_message = "Field 'use_query' is deprecated. From now on, default behavior is compatible to use_query=True. Please remove this field from your code."
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        lst = dict_get(instance, self.search_in)
        item = dict_get(instance, self.index_of)
        instance[self.to_field] = lst.index(item)
        return instance


class TakeByField(InstanceOperator):
    """From field 'field' of a given instance, select the member indexed by field 'index', and store to field 'to_field'."""

    field: str
    index: str
    to_field: str = None
    use_query: Optional[bool] = None

    def verify(self):
        super().verify()
        if self.use_query is not None:
            depr_message = "Field 'use_query' is deprecated. From now on, default behavior is compatible to use_query=True. Please remove this field from your code."
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)

    def prepare(self):
        if self.to_field is None:
            self.to_field = self.field

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        value = dict_get(instance, self.field)
        index_value = dict_get(instance, self.index)
        instance[self.to_field] = value[index_value]
        return instance


class Perturb(FieldOperator):
    """Slightly perturbs the contents of ``field``. Could be Handy for imitating prediction from given target.

    When task was classification, argument ``select_from`` can be used to list the other potential classes, as a
    relevant perturbation

    Args:
        percentage_to_perturb (int):
            the percentage of the instances for which to apply this perturbation. Defaults to 1 (1 percent)
        select_from: List[Any]:
            a list of values to select from, as a perturbation of the field's value. Defaults to [].
    """

    select_from: List[Any] = []
    percentage_to_perturb: int = 1  # 1 percent

    def verify(self):
        assert (
            0 <= self.percentage_to_perturb and self.percentage_to_perturb <= 100
        ), f"'percentage_to_perturb' should be in the range 0..100. Received {self.percentage_to_perturb}"

    def prepare(self):
        super().prepare()
        self.random_generator = new_random_generator(sub_seed="CopyWithPerturbation")

    def process_value(self, value: Any) -> Any:
        perturb = self.random_generator.randint(1, 100) <= self.percentage_to_perturb
        if not perturb:
            return value

        if value in self.select_from:
            # 80% of cases, return a decent class, otherwise, perturb the value itself as follows
            if self.random_generator.random() < 0.8:
                return self.random_generator.choice(self.select_from)

        if isinstance(value, float):
            return value * (0.5 + self.random_generator.random())

        if isinstance(value, int):
            perturb = 1 if self.random_generator.random() < 0.5 else -1
            return value + perturb

        if isinstance(value, str):
            if len(value) < 2:
                # give up perturbation
                return value
            # throw one char out
            prefix_len = self.random_generator.randint(1, len(value) - 1)
            return value[:prefix_len] + value[prefix_len + 1 :]

        # and in any other case:
        return value


class Copy(FieldOperator):
    """Copies values from specified fields to specified fields.

    Args (of parent class):
        field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields.

    Examples:
        An input instance {"a": 2, "b": 3}, when processed by
        ``Copy(field_to_field={"a": "b"})``
        would yield {"a": 2, "b": 2}, and when processed by
        ``Copy(field_to_field={"a": "c"})`` would yield
        {"a": 2, "b": 3, "c": 2}

        with field names containing / , we can also copy inside the field:
        ``Copy(field="a/0",to_field="a")``
        would process instance {"a": [1, 3]} into {"a": 1}


    """

    def process_value(self, value: Any) -> Any:
        return value


class RecursiveCopy(FieldOperator):
    def process_value(self, value: Any) -> Any:
        return recursive_copy(value)


@deprecation(version="2.0.0", alternative=Copy)
class CopyFields(Copy):
    pass


class GetItemByIndex(FieldOperator):
    """Get from the item list by the index in the field."""

    items_list: List[Any]

    def process_value(self, value: Any) -> Any:
        return self.items_list[value]


class AddID(InstanceOperator):
    """Stores a unique id value in the designated 'id_field_name' field of the given instance."""

    id_field_name: str = "id"

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        instance[self.id_field_name] = str(uuid.uuid4()).replace("-", "")
        return instance


class Cast(FieldOperator):
    """Casts specified fields to specified types.

    Args:
        default (object): A dictionary mapping field names to default values for cases of casting failure.
        process_every_value (bool): If true, all fields involved must contain lists, and each value in the list is then casted. Defaults to False.
    """

    to: str
    failure_default: Optional[Any] = "__UNDEFINED__"

    def prepare(self):
        self.types = {"int": int, "float": float, "str": str, "bool": bool}

    def process_value(self, value):
        try:
            return self.types[self.to](value)
        except ValueError as e:
            if self.failure_default == "__UNDEFINED__":
                raise ValueError(
                    f'Failed to cast value {value} to type "{self.to}", and no default value is provided.'
                ) from e
            return self.failure_default


class CastFields(InstanceOperator):
    """Casts specified fields to specified types.

    Args:
        fields (Dict[str, str]):
            A dictionary mapping field names to the names of the types to cast the fields to.
            e.g: "int", "str", "float", "bool". Basic names of types
        defaults (Dict[str, object]):
            A dictionary mapping field names to default values for cases of casting failure.
        process_every_value (bool):
            If true, all fields involved must contain lists, and each value in the list is then casted. Defaults to False.

    Example:
        .. code-block:: python

                CastFields(
                    fields={"a/d": "float", "b": "int"},
                    failure_defaults={"a/d": 0.0, "b": 0},
                    process_every_value=True,
                )

    would process the input instance: ``{"a": {"d": ["half", "0.6", 1, 12]}, "b": ["2"]}``
    into ``{"a": {"d": [0.0, 0.6, 1.0, 12.0]}, "b": [2]}``.

    """

    fields: Dict[str, str] = field(default_factory=dict)
    failure_defaults: Dict[str, object] = field(default_factory=dict)
    use_nested_query: bool = None  # deprecated field
    process_every_value: bool = False

    def prepare(self):
        self.types = {"int": int, "float": float, "str": str, "bool": bool}

    def verify(self):
        super().verify()
        if self.use_nested_query is not None:
            depr_message = "Field 'use_nested_query' is deprecated. From now on, default behavior is compatible to use_nested_query=True. Please remove this field from your code."
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)

    def _cast_single(self, value, type, field):
        try:
            return self.types[type](value)
        except Exception as e:
            if field not in self.failure_defaults:
                raise ValueError(
                    f'Failed to cast field "{field}" with value {value} to type "{type}", and no default value is provided.'
                ) from e
            return self.failure_defaults[field]

    def _cast_multiple(self, values, type, field):
        return [self._cast_single(value, type, field) for value in values]

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for field_name, type in self.fields.items():
            value = dict_get(instance, field_name)
            if self.process_every_value:
                assert isinstance(
                    value, list
                ), f"'process_every_field' == True is allowed only for fields whose values are lists, but value of field '{field_name}' is '{value}'"
                casted_value = self._cast_multiple(value, type, field_name)
            else:
                casted_value = self._cast_single(value, type, field_name)

            dict_set(instance, field_name, casted_value)
        return instance


class DivideAllFieldsBy(InstanceOperator):
    """Recursively reach down to all fields that are float, and divide each by 'divisor'.

    The given instance is viewed as a tree whose internal nodes are dictionaries and lists, and
    the leaves are either 'float' and then divided, or other basic type, in which case, a ValueError is raised
    if input flag 'strict' is True, or -- left alone, if 'strict' is False.

    Args:
        divisor (float) the value to divide by
        strict (bool) whether to raise an error upon visiting a leaf that is not float. Defaults to False.

    Example:
        when instance {"a": 10.0, "b": [2.0, 4.0, 7.0], "c": 5} is processed by operator:
        operator = DivideAllFieldsBy(divisor=2.0)
        the output is: {"a": 5.0, "b": [1.0, 2.0, 3.5], "c": 5}
        If the operator were defined with strict=True, through:
        operator = DivideAllFieldsBy(divisor=2.0, strict=True),
        the processing of the above instance would raise a ValueError, for the integer at "c".
    """

    divisor: float = 1.0
    strict: bool = False

    def _recursive_divide(self, instance, divisor):
        if isinstance(instance, dict):
            for key, value in instance.items():
                instance[key] = self._recursive_divide(value, divisor)
        elif isinstance(instance, list):
            for i, value in enumerate(instance):
                instance[i] = self._recursive_divide(value, divisor)
        elif isinstance(instance, float):
            instance /= divisor
        elif self.strict:
            raise ValueError(f"Cannot divide instance of type {type(instance)}")
        return instance

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        return self._recursive_divide(instance, self.divisor)


class ArtifactFetcherMixin:
    """Provides a way to fetch and cache artifacts in the system.

    Args:
        cache (Dict[str, Artifact]): A cache for storing fetched artifacts.
    """

    _artifacts_cache = LRUCache(max_size=1000)

    @classmethod
    def get_artifact(cls, artifact_identifier: str) -> Artifact:
        if str(artifact_identifier) not in cls._artifacts_cache:
            artifact, catalog = fetch_artifact(artifact_identifier)
            cls._artifacts_cache[str(artifact_identifier)] = artifact
        return shallow_copy(cls._artifacts_cache[str(artifact_identifier)])


class ApplyOperatorsField(InstanceOperator):
    """Applies value operators to each instance in a stream based on specified fields.

    Args:
        operators_field (str): name of the field that contains a single name, or a list of names, of the operators to be applied,
            one after the other, for the processing of the instance. Each operator is equipped with 'process_instance()'
            method.

        default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.

    Example:
        when instance {"prediction": 111, "references": [222, 333] , "c": ["processors.to_string", "processors.first_character"]}
        is processed by operator (please look up the catalog that these operators, they are tuned to process fields "prediction" and
        "references"):
        operator = ApplyOperatorsField(operators_field="c"),
        the resulting instance is: {"prediction": "1", "references": ["2", "3"], "c": ["processors.to_string", "processors.first_character"]}

    """

    operators_field: str
    default_operators: List[str] = None

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        operator_names = instance.get(self.operators_field)
        if operator_names is None:
            assert (
                self.default_operators is not None
            ), f"No operators found in field '{self.operators_field}', and no default operators provided."
            operator_names = self.default_operators

        if isinstance(operator_names, str):
            operator_names = [operator_names]
        # otherwise , operator_names is already a list

        # we now have a list of nanes of operators, each is equipped with process_instance method.
        operator = SequentialOperator(steps=operator_names)
        return operator.process_instance(instance, stream_name=stream_name)


class FilterByCondition(StreamOperator):
    """Filters a stream, yielding only instances in which the values in required fields follow the required condition operator.

    Raises an error if a required field name is missing from the input instance.

    Args:
       values (Dict[str, Any]): Field names and respective Values that instances must match according the condition, to be included in the output.

       condition: the name of the desired condition operator between the specified (sub) field's value  and the provided constant value.  Supported conditions are  ("gt", "ge", "lt", "le", "ne", "eq", "in","not in")

       error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.

    Examples:
       | ``FilterByCondition(values = {"a":4}, condition = "gt")`` will yield only instances where field ``"a"`` contains a value ``> 4``
       | ``FilterByCondition(values = {"a":4}, condition = "le")`` will yield only instances where ``"a"<=4``
       | ``FilterByCondition(values = {"a":[4,8]}, condition = "in")`` will yield only instances where ``"a"`` is ``4`` or ``8``
       | ``FilterByCondition(values = {"a":[4,8]}, condition = "not in")`` will yield only instances where ``"a"`` is different from ``4`` or ``8``
       | ``FilterByCondition(values = {"a/b":[4,8]}, condition = "not in")`` will yield only instances where ``"a"`` is a dict in which key ``"b"`` is mapped to a value that is neither ``4`` nor ``8``
       | ``FilterByCondition(values = {"a[2]":4}, condition = "le")`` will yield only instances where "a" is a list whose 3-rd element is ``<= 4``


    """

    values: Dict[str, Any]
    condition: str
    condition_to_func = {
        "gt": operator.gt,
        "ge": operator.ge,
        "lt": operator.lt,
        "le": operator.le,
        "eq": operator.eq,
        "ne": operator.ne,
        "in": None,  # Handled as special case
        "not in": None,  # Handled as special case
    }
    error_on_filtered_all: bool = True

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        yielded = False
        for instance in stream:
            if self._is_required(instance):
                yielded = True
                yield instance

        if not yielded and self.error_on_filtered_all:
            raise RuntimeError(
                f"{self.__class__.__name__} filtered out every instance in stream '{stream_name}'. If this is intended set error_on_filtered_all=False"
            )

    def verify(self):
        if self.condition not in self.condition_to_func:
            raise ValueError(
                f"Unsupported condition operator '{self.condition}', supported {list(self.condition_to_func.keys())}"
            )

        for key, value in self.values.items():
            if self.condition in ["in", "not it"] and not isinstance(value, list):
                raise ValueError(
                    f"The filter for key ('{key}') in FilterByCondition with condition '{self.condition}' must be list but is not : '{value}'"
                )
        return super().verify()

    def _is_required(self, instance: dict) -> bool:
        for key, value in self.values.items():
            try:
                instance_key = dict_get(instance, key)
            except ValueError as ve:
                raise ValueError(
                    f"Required filter field ('{key}') in FilterByCondition is not found in instance."
                ) from ve
            if self.condition == "in":
                if instance_key not in value:
                    return False
            elif self.condition == "not in":
                if instance_key in value:
                    return False
            else:
                func = self.condition_to_func[self.condition]
                if func is None:
                    raise ValueError(
                        f"Function not defined for condition '{self.condition}'"
                    )
                if not func(instance_key, value):
                    return False
        return True


class FilterByConditionBasedOnFields(FilterByCondition):
    """Filters a stream based on a condition between 2 fields values.

    Raises an error if either of the required fields names is missing from the input instance.

    Args:
       values (Dict[str, str]): The fields names that the filter operation is based on.
       condition: the name of the desired condition operator between the specified field's values.  Supported conditions are  ("gt", "ge", "lt", "le", "ne", "eq", "in","not in")
       error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.

    Examples:
       FilterByCondition(values = {"a":"b}, condition = "gt") will yield only instances where field "a" contains a value greater then the value in field "b".
       FilterByCondition(values = {"a":"b}, condition = "le") will yield only instances where "a"<="b"
    """

    def _is_required(self, instance: dict) -> bool:
        for key, value in self.values.items():
            try:
                instance_key = dict_get(instance, key)
            except ValueError as ve:
                raise ValueError(
                    f"Required filter field ('{key}') in FilterByCondition is not found in instance"
                ) from ve
            try:
                instance_value = dict_get(instance, value)
            except ValueError as ve:
                raise ValueError(
                    f"Required filter field ('{value}') in FilterByCondition is not found in instance"
                ) from ve
            if self.condition == "in":
                if instance_key not in instance_value:
                    return False
            elif self.condition == "not in":
                if instance_key in instance_value:
                    return False
            else:
                func = self.condition_to_func[self.condition]
                if func is None:
                    raise ValueError(
                        f"Function not defined for condition '{self.condition}'"
                    )
                if not func(instance_key, instance_value):
                    return False
        return True


class ComputeExpressionMixin(Artifact):
    """Computes an expression expressed over fields of an instance.

    Args:
        expression (str): the expression, in terms of names of fields of an instance
        imports_list (List[str]): list of names of imports needed for the evaluation of the expression
    """

    expression: str
    imports_list: List[str] = OptionalField(default_factory=list)

    def prepare(self):
        # can not do the imports here, because object does not pickle with imports
        self.globals = {
            module_name: __import__(module_name) for module_name in self.imports_list
        }

    def compute_expression(self, instance: dict) -> Any:
        if settings.allow_unverified_code:
            return eval(self.expression, {**self.globals, **instance})

        raise ValueError(
            f"Cannot evaluate expression in {self} when unitxt.settings.allow_unverified_code=False - either set it to True or set {settings.allow_unverified_code_key} environment variable."
            "\nNote: If using test_card() with the default setting, increase loader_limit to avoid missing conditions due to limited data sampling."
        )


class FilterByExpression(StreamOperator, ComputeExpressionMixin):
    """Filters a stream, yielding only instances which fulfil a condition specified as a string to be python's eval-uated.

    Raises an error if a field participating in the specified condition is missing from the instance

    Args:
        expression (str):
            a condition over fields of the instance, to be processed by python's eval()
        imports_list (List[str]):
            names of imports needed for the eval of the query (e.g. 're', 'json')
        error_on_filtered_all (bool, optional):
            If True, raises an error if all instances are filtered out. Defaults to True.

    Examples:
        | ``FilterByExpression(expression = "a > 4")`` will yield only instances where "a">4
        | ``FilterByExpression(expression = "a <= 4 and b > 5")`` will yield only instances where the value of field "a" is not exceeding 4 and in field "b" -- greater than 5
        | ``FilterByExpression(expression = "a in [4, 8]")`` will yield only instances where "a" is 4 or 8
        | ``FilterByExpression(expression = "a not in [4, 8]")`` will yield only instances where "a" is neither 4 nor 8
        | ``FilterByExpression(expression = "a['b'] not in [4, 8]")`` will yield only instances where "a" is a dict in which key 'b' is mapped to a value that is neither 4 nor 8
    """

    error_on_filtered_all: bool = True

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        yielded = False
        for instance in stream:
            if self.compute_expression(instance):
                yielded = True
                yield instance

        if not yielded and self.error_on_filtered_all:
            raise RuntimeError(
                f"{self.__class__.__name__} filtered out every instance in stream '{stream_name}'. If this is intended set error_on_filtered_all=False"
            )


class ExecuteExpression(InstanceOperator, ComputeExpressionMixin):
    """Compute an expression, specified as a string to be eval-uated, over the instance's fields, and store the result in field to_field.

    Raises an error if a field mentioned in the query is missing from the instance.

    Args:
       expression (str): an expression to be evaluated over the fields of the instance
       to_field (str): the field where the result is to be stored into
       imports_list (List[str]): names of imports needed for the eval of the query (e.g. 're', 'json')

    Examples:
       When instance {"a": 2, "b": 3} is process-ed by operator
       ExecuteExpression(expression="a+b", to_field = "c")
       the result is {"a": 2, "b": 3, "c": 5}

       When instance {"a": "hello", "b": "world"} is process-ed by operator
       ExecuteExpression(expression = "a+' '+b", to_field = "c")
       the result is {"a": "hello", "b": "world", "c": "hello world"}

    """

    to_field: str

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        instance[self.to_field] = self.compute_expression(instance)
        return instance


class ExtractMostCommonFieldValues(MultiStreamOperator):
    field: str
    stream_name: str
    overall_top_frequency_percent: Optional[int] = 100
    min_frequency_percent: Optional[int] = 0
    to_field: str
    process_every_value: Optional[bool] = False

    """
    Extract the unique values of a field ('field') of a given stream ('stream_name') and store (the most frequent of) them
    as a list in a new field ('to_field') in all streams.

    More specifically, sort all the unique values encountered in field 'field' by decreasing order of frequency.
    When 'overall_top_frequency_percent' is smaller than 100, trim the list from bottom, so that the total frequency of
    the remaining values makes 'overall_top_frequency_percent' of the total number of instances in the stream.
    When 'min_frequency_percent' is larger than 0, remove from the list any value whose relative frequency makes
    less than 'min_frequency_percent' of the total number of instances in the stream.
    At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default values.

    Examples:

    ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes") - extracts all the unique values of
    field 'label', sorts them by decreasing frequency, and stores the resulting list in field 'classes' of each and
    every instance in all streams.

    ExtractMostCommonFieldValues(stream_name="train", field="labels", to_field="classes", process_every_value=True) -
    in case that field 'labels' contains a list of values (and not a single value) - track the occurrences of all the possible
    value members in these lists, and report the most frequent values.
    if process_every_value=False, track the most frequent whole lists, and report those (as a list of lists) in field
    'to_field' of each instance of all streams.

    ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes",overall_top_frequency_percent=80) -
    extracts the most frequent possible values of field 'label' that together cover at least 80% of the instances of stream_name,
    and stores them in field 'classes' of each instance of all streams.

    ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes",min_frequency_percent=5) -
    extracts all possible values of field 'label' that cover, each, at least 5% of the instances.
    Stores these values, sorted by decreasing order of frequency, in field 'classes' of each instance in all streams.
    """

    def verify(self):
        assert (
            self.overall_top_frequency_percent <= 100
            and self.overall_top_frequency_percent >= 0
        ), "'overall_top_frequency_percent' must be between 0 and 100"
        assert (
            self.min_frequency_percent <= 100 and self.min_frequency_percent >= 0
        ), "'min_frequency_percent' must be between 0 and 100"
        assert not (
            self.overall_top_frequency_percent < 100 and self.min_frequency_percent > 0
        ), "At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default value"
        super().verify()

    def process(self, multi_stream: MultiStream) -> MultiStream:
        stream = multi_stream[self.stream_name]
        counter = Counter()
        for instance in stream:
            if (not isinstance(instance[self.field], list)) and (
                self.process_every_value is True
            ):
                raise ValueError(
                    "'process_every_field' is allowed to change to 'True' only for fields whose contents are lists"
                )
            if (not isinstance(instance[self.field], list)) or (
                self.process_every_value is False
            ):
                # either not a list, or is a list but process_every_value == False : view contetns of 'field' as one entity whose occurrences are counted.
                counter.update(
                    [(*instance[self.field],)]
                    if isinstance(instance[self.field], list)
                    else [instance[self.field]]
                )  # convert to a tuple if list, to enable the use of Counter which would not accept
                # a list as an hashable entity to count its occurrences
            else:
                # content of 'field' is a list and process_every_value == True: add one occurrence on behalf of each individual value
                counter.update(instance[self.field])
        # here counter counts occurrences of individual values, or tuples.
        values_and_counts = counter.most_common()
        if self.overall_top_frequency_percent < 100:
            top_frequency = (
                sum(counter.values()) * self.overall_top_frequency_percent / 100.0
            )
            sum_counts = 0
            for _i, p in enumerate(values_and_counts):
                sum_counts += p[1]
                if sum_counts >= top_frequency:
                    break
            values_and_counts = counter.most_common(_i + 1)
        if self.min_frequency_percent > 0:
            min_frequency = self.min_frequency_percent * sum(counter.values()) / 100.0
            while values_and_counts[-1][1] < min_frequency:
                values_and_counts.pop()
        values_to_keep = [
            [*ele[0]] if isinstance(ele[0], tuple) else ele[0]
            for ele in values_and_counts
        ]

        addmostcommons = Set(fields={self.to_field: values_to_keep})
        return addmostcommons(multi_stream)


class ExtractFieldValues(ExtractMostCommonFieldValues):
    def verify(self):
        super().verify()

    def prepare(self):
        self.overall_top_frequency_percent = 100
        self.min_frequency_percent = 0


class Intersect(FieldOperator):
    """Intersects the value of a field, which must be a list, with a given list.

    Args:
        allowed_values (list) - list to intersect.
    """

    allowed_values: List[Any]

    def verify(self):
        super().verify()
        if self.process_every_value:
            raise ValueError(
                "'process_every_value=True' is not supported in Intersect operator"
            )

        if not isinstance(self.allowed_values, list):
            raise ValueError(
                f"The allowed_values is not a list but '{self.allowed_values}'"
            )

    def process_value(self, value: Any) -> Any:
        super().process_value(value)
        if not isinstance(value, list):
            raise ValueError(f"The value in field is not a list but '{value}'")
        return [e for e in value if e in self.allowed_values]


class RemoveValues(FieldOperator):
    """Removes elements in a field, which must be a list, using a given list of unallowed.

    Args:
        unallowed_values (list) - values to be removed.
    """

    unallowed_values: List[Any]

    def verify(self):
        super().verify()

        if not isinstance(self.unallowed_values, list):
            raise ValueError(
                f"The unallowed_values is not a list but '{self.unallowed_values}'"
            )

    def process_value(self, value: Any) -> Any:
        if not isinstance(value, list):
            raise ValueError(f"The value in field is not a list but '{value}'")
        return [e for e in value if e not in self.unallowed_values]


class Unique(SingleStreamReducer):
    """Reduces a stream to unique instances based on specified fields.

    Args:
        fields (List[str]): The fields that should be unique in each instance.
    """

    fields: List[str] = field(default_factory=list)

    @staticmethod
    def to_tuple(instance: dict, fields: List[str]) -> tuple:
        result = []
        for field_name in fields:
            value = instance[field_name]
            if isinstance(value, list):
                value = tuple(value)
            result.append(value)
        return tuple(result)

    def process(self, stream: Stream) -> Stream:
        seen = set()
        for instance in stream:
            values = self.to_tuple(instance, self.fields)
            if values not in seen:
                seen.add(values)
        return list(seen)


class SplitByValue(MultiStreamOperator):
    """Splits a MultiStream into multiple streams based on unique values in specified fields.

    Args:
        fields (List[str]): The fields to use when splitting the MultiStream.
    """

    fields: List[str] = field(default_factory=list)

    def process(self, multi_stream: MultiStream) -> MultiStream:
        uniques = Unique(fields=self.fields)(multi_stream)

        result = {}

        for stream_name, stream in multi_stream.items():
            stream_unique_values = uniques[stream_name]
            for unique_values in stream_unique_values:
                filtering_values = dict(zip(self.fields, unique_values))
                filtered_streams = FilterByCondition(
                    values=filtering_values, condition="eq"
                )._process_single_stream(stream)
                filtered_stream_name = (
                    stream_name + "_" + nested_tuple_to_string(unique_values)
                )
                result[filtered_stream_name] = filtered_streams

        return MultiStream(result)


class SplitByNestedGroup(MultiStreamOperator):
    """Splits a MultiStream that is small - for metrics, hence: whole stream can sit in memory, split by the value of field 'group'.

    Args:
        number_of_fusion_generations: int

    the value in field group is of the form "sourcen/sourcenminus1/..." describing the sources in which the instance sat
    when these were fused, potentially several phases of fusion. the name of the most recent source sits first in this value.
    (See BaseFusion and its extensions)
    number_of_fuaion_generations  specifies the length of the prefix by which to split the stream.
    E.g. for number_of_fusion_generations = 1, only the most recent fusion in creating this multi_stream, affects the splitting.
    For number_of_fusion_generations = -1, take the whole history written in this field, ignoring number of generations.
    """

    field_name_of_group: str = "group"
    number_of_fusion_generations: int = 1

    def process(self, multi_stream: MultiStream) -> MultiStream:
        result = defaultdict(list)

        for stream_name, stream in multi_stream.items():
            for instance in stream:
                if self.field_name_of_group not in instance:
                    raise ValueError(
                        f"Field {self.field_name_of_group} is missing from instance. Available fields: {instance.keys()}"
                    )
                signature = (
                    stream_name
                    + "~"  #  a sign that does not show within group values
                    + (
                        "/".join(
                            instance[self.field_name_of_group].split("/")[
                                : self.number_of_fusion_generations
                            ]
                        )
                        if self.number_of_fusion_generations >= 0
                        # for values with a smaller number of generations - take up to their last generation
                        else instance[self.field_name_of_group]
                        # for each instance - take all its generations
                    )
                )
                result[signature].append(instance)

        return MultiStream.from_iterables(result)


class ApplyStreamOperatorsField(StreamOperator, ArtifactFetcherMixin):
    """Applies stream operators to a stream based on specified fields in each instance.

    Args:
        field (str): The field containing the operators to be applied.
        reversed (bool): Whether to apply the operators in reverse order.
    """

    field: str
    reversed: bool = False

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        first_instance = stream.peek()

        operators = first_instance.get(self.field, [])
        if isinstance(operators, str):
            operators = [operators]

        if self.reversed:
            operators = list(reversed(operators))

        for operator_name in operators:
            operator = self.get_artifact(operator_name)
            assert isinstance(
                operator, StreamingOperator
            ), f"Operator {operator_name} must be a StreamOperator"

            stream = operator(MultiStream({stream_name: stream}))[stream_name]

        yield from stream


def update_scores_of_stream_instances(stream: Stream, scores: List[dict]) -> Generator:
    for instance, score in zip(stream, scores):
        instance["score"] = recursive_copy(score)
        yield instance


class ApplyMetric(StreamOperator, ArtifactFetcherMixin):
    """Applies metric operators to a stream based on a metric field specified in each instance.

    Args:
        metric_field (str): The field containing the metrics to be applied.
        calc_confidence_intervals (bool): Whether the applied metric should calculate confidence intervals or not.
    """

    metric_field: str
    calc_confidence_intervals: bool

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        from .metrics import Metric, MetricsList

        # to be populated only when two or more metrics
        accumulated_scores = []

        first_instance = stream.peek()

        metric_names = first_instance.get(self.metric_field, [])
        if not metric_names:
            raise RuntimeError(
                f"Missing metric names in field '{self.metric_field}' and instance '{first_instance}'."
            )

        if isinstance(metric_names, str):
            metric_names = [metric_names]

        metrics_list = []
        for metric_name in metric_names:
            metric = self.get_artifact(metric_name)
            if isinstance(metric, MetricsList):
                metrics_list.extend(list(metric.items))
            elif isinstance(metric, Metric):
                metrics_list.append(metric)
            else:
                raise ValueError(
                    f"Operator {metric_name} must be a Metric or MetricsList"
                )

        for metric in metrics_list:
            if not self.calc_confidence_intervals:
                metric.disable_confidence_interval_calculation()
        # Each metric operator computes its score and then sets the main score, overwriting
        # the previous main score value (if any). So, we need to reverse the order of the listed metrics.
        # This will cause the first listed metric to run last, and the main score will be set
        # by the first listed metric (as desired).
        metrics_list = list(reversed(metrics_list))

        for i, metric in enumerate(metrics_list):
            if i == 0:  # first metric
                multi_stream = MultiStream({"tmp": stream})
            else:  # metrics with previous scores
                reusable_generator = ReusableGenerator(
                    generator=update_scores_of_stream_instances,
                    gen_kwargs={"stream": stream, "scores": accumulated_scores},
                )
                multi_stream = MultiStream.from_generators({"tmp": reusable_generator})

            multi_stream = metric(multi_stream)

            if i < len(metrics_list) - 1:  # last metric
                accumulated_scores = []
                for inst in multi_stream["tmp"]:
                    accumulated_scores.append(recursive_copy(inst["score"]))

        yield from multi_stream["tmp"]


class MergeStreams(MultiStreamOperator):
    """Merges multiple streams into a single stream.

    Args:
        new_stream_name (str): The name of the new stream resulting from the merge.
        add_origin_stream_name (bool): Whether to add the origin stream name to each instance.
        origin_stream_name_field_name (str): The field name for the origin stream name.
    """

    streams_to_merge: List[str] = None
    new_stream_name: str = "all"
    add_origin_stream_name: bool = True
    origin_stream_name_field_name: str = "origin"

    def merge(self, multi_stream) -> Generator:
        for stream_name, stream in multi_stream.items():
            if self.streams_to_merge is None or stream_name in self.streams_to_merge:
                for instance in stream:
                    if self.add_origin_stream_name:
                        instance[self.origin_stream_name_field_name] = stream_name
                    yield instance

    def process(self, multi_stream: MultiStream) -> MultiStream:
        return MultiStream(
            {
                self.new_stream_name: DynamicStream(
                    self.merge, gen_kwargs={"multi_stream": multi_stream}
                )
            }
        )


class Shuffle(PagedStreamOperator):
    """Shuffles the order of instances in each page of a stream.

    Args (of superclass):
        page_size (int): The size of each page in the stream. Defaults to 1000.
    """

    random_generator: Random = None

    def before_process_multi_stream(self):
        super().before_process_multi_stream()
        self.random_generator = new_random_generator(sub_seed="shuffle")

    def process(self, page: List[Dict], stream_name: Optional[str] = None) -> Generator:
        self.random_generator.shuffle(page)
        yield from page


class FeatureGroupedShuffle(Shuffle):
    """Class for shuffling an input dataset by instance 'blocks', not on the individual instance level.

    Example is if the dataset consists of questions with paraphrases of it, and each question falls into a topic.
    All paraphrases have the same ID value as the original.
    In this case, we may want to shuffle on grouping_features = ['question ID'],
    to keep the paraphrases and original question together.
    We may also want to group by both 'question ID' and 'topic', if the question IDs are repeated between topics.
    In this case, grouping_features = ['question ID', 'topic']

    Args:
        grouping_features (list of strings): list of feature names to use to define the groups.
            a group is defined by each unique observed combination of data values for features in grouping_features
        shuffle_within_group (bool): whether to further shuffle the instances within each group block, keeping the block order

    Args (of superclass):
        page_size (int): The size of each page in the stream. Defaults to 1000.
            Note: shuffle_by_grouping_features determines the unique groups (unique combinations of values of grouping_features)
            separately by page (determined by page_size).  If a block of instances in the same group are split
            into separate pages (either by a page break falling in the group, or the dataset was not sorted by
            grouping_features), these instances will be shuffled separately and thus the grouping may be
            broken up by pages.  If the user wants to ensure the shuffle does the grouping and shuffling
            across all pages, set the page_size to be larger than the dataset size.
            See outputs_2features_bigpage and outputs_2features_smallpage in test_grouped_shuffle.
    """

    grouping_features: List[str] = None
    shuffle_within_group: bool = False

    def process(self, page: List[Dict], stream_name: Optional[str] = None) -> Generator:
        if self.grouping_features is None:
            super().process(page, stream_name)
        else:
            yield from self.shuffle_by_grouping_features(page)

    def shuffle_by_grouping_features(self, page):
        import itertools
        from collections import defaultdict

        groups_to_instances = defaultdict(list)
        for item in page:
            groups_to_instances[
                tuple(item[ff] for ff in self.grouping_features)
            ].append(item)
        # now extract the groups (i.e., lists of dicts with order preserved)
        page_blocks = list(groups_to_instances.values())
        # and now shuffle the blocks
        self.random_generator.shuffle(page_blocks)
        if self.shuffle_within_group:
            blocks = []
            # reshuffle the instances within each block, but keep the blocks in order
            for block in page_blocks:
                self.random_generator.shuffle(block)
                blocks.append(block)
            page_blocks = blocks

        # now flatten the list so it consists of individual dicts, but in (randomized) block order
        return list(itertools.chain(*page_blocks))


class EncodeLabels(InstanceOperator):
    """Encode each value encountered in any field in 'fields' into the integers 0,1,...

    Encoding is determined by a str->int map that is built on the go, as different values are
    first encountered in the stream, either as list members or as values in single-value fields.

    Args:
        fields (List[str]): The fields to encode together.

    Example:
        applying ``EncodeLabels(fields = ["a", "b/*"])``
        on input stream = ``[{"a": "red", "b": ["red", "blue"], "c":"bread"},
        {"a": "blue", "b": ["green"], "c":"water"}]``   will yield the
        output stream = ``[{'a': 0, 'b': [0, 1], 'c': 'bread'}, {'a': 1, 'b': [2], 'c': 'water'}]``

        Note: dict_utils are applied here, and hence, fields that are lists, should be included in
        input 'fields' with the appendix ``"/*"``  as in the above example.

    """

    fields: List[str]

    def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream:
        self.encoder = {}
        return super()._process_multi_stream(multi_stream)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for field_name in self.fields:
            values = dict_get(instance, field_name)
            values_was_a_list = isinstance(values, list)
            if not isinstance(values, list):
                values = [values]
            for value in values:
                if value not in self.encoder:
                    self.encoder[value] = len(self.encoder)
            new_values = [self.encoder[value] for value in values]
            if not values_was_a_list:
                new_values = new_values[0]
            dict_set(
                instance,
                field_name,
                new_values,
                not_exist_ok=False,  # the values to encode where just taken from there
                set_multiple="*" in field_name
                and isinstance(new_values, list)
                and len(new_values) > 0,
            )

        return instance


class StreamRefiner(StreamOperator):
    """Discard from the input stream all instances beyond the leading 'max_instances' instances.

    Thereby, if the input stream consists of no more than 'max_instances' instances, the resulting stream is the whole of the
    input stream. And if the input stream consists of more than 'max_instances' instances, the resulting stream only consists
    of the leading 'max_instances' of the input stream.

    Args:
        max_instances (int)
        apply_to_streams (optional, list(str)):
            names of streams to refine.

    Examples:
        when input = ``[{"a": 1},{"a": 2},{"a": 3},{"a": 4},{"a": 5},{"a": 6}]`` is fed into
        ``StreamRefiner(max_instances=4)``
        the resulting stream is ``[{"a": 1},{"a": 2},{"a": 3},{"a": 4}]``
    """

    max_instances: int = None
    apply_to_streams: Optional[List[str]] = None

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        if self.max_instances is not None:
            yield from stream.take(self.max_instances)
        else:
            yield from stream


class Balance(StreamRefiner):
    """A class used to balance streams deterministically.

    For each instance, a signature is constructed from the values of the instance in specified input 'fields'.
    By discarding instances from the input stream, DeterministicBalancer maintains equal number of instances for all signatures.
    When also input 'max_instances' is specified, DeterministicBalancer maintains a total instance count not exceeding
    'max_instances'. The total number of discarded instances is as few as possible.

    Args:
        fields (List[str]):
            A list of field names to be used in producing the instance's signature.
        max_instances (Optional, int):
            overall max.

    Usage:
        ``balancer = DeterministicBalancer(fields=["field1", "field2"], max_instances=200)``
        ``balanced_stream = balancer.process(stream)``

    Example:
        When input ``[{"a": 1, "b": 1},{"a": 1, "b": 2},{"a": 2},{"a": 3},{"a": 4}]`` is fed into
        ``DeterministicBalancer(fields=["a"])``
        the resulting stream will be: ``[{"a": 1, "b": 1},{"a": 2},{"a": 3},{"a": 4}]``
    """

    fields: List[str]

    def signature(self, instance):
        return str(tuple(dict_get(instance, field) for field in self.fields))

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        counter = Counter()

        for instance in stream:
            counter[self.signature(instance)] += 1

        if len(counter) == 0:
            return

        lowest_count = counter.most_common()[-1][-1]

        max_total_instances_per_sign = lowest_count
        if self.max_instances is not None:
            max_total_instances_per_sign = min(
                lowest_count, self.max_instances // len(counter)
            )

        counter = Counter()

        for instance in stream:
            sign = self.signature(instance)
            if counter[sign] < max_total_instances_per_sign:
                counter[sign] += 1
                yield instance


class DeterministicBalancer(Balance):
    pass


class MinimumOneExamplePerLabelRefiner(StreamRefiner):
    """A class used to return a specified number instances ensuring at least one example  per label.

    For each instance, a signature value is constructed from the values of the instance in specified input ``fields``.
    ``MinimumOneExamplePerLabelRefiner`` takes first instance that appears from each label (each unique signature), and then adds more elements up to the max_instances limit.  In general, the refiner takes the first elements in the stream that meet the required conditions.
    ``MinimumOneExamplePerLabelRefiner`` then shuffles the results to avoid having one instance
    from each class first and then the rest . If max instance is not set, the original stream will be used

    Args:
        fields (List[str]):
            A list of field names to be used in producing the instance's signature.
        max_instances (Optional, int):
            Number of elements to select. Note that max_instances of StreamRefiners
            that are passed to the recipe (e.g. ``train_refiner``. ``test_refiner``) are overridden
            by the recipe parameters ( ``max_train_instances``, ``max_test_instances``)

    Usage:
        | ``balancer = MinimumOneExamplePerLabelRefiner(fields=["field1", "field2"], max_instances=200)``
        | ``balanced_stream = balancer.process(stream)``

    Example:
        When input ``[{"a": 1, "b": 1},{"a": 1, "b": 2},{"a": 1, "b": 3},{"a": 1, "b": 4},{"a": 2, "b": 5}]`` is fed into
        ``MinimumOneExamplePerLabelRefiner(fields=["a"], max_instances=3)``
        the resulting stream will be:
        ``[{'a': 1, 'b': 1}, {'a': 1, 'b': 2}, {'a': 2, 'b': 5}]`` (order may be different)
    """

    fields: List[str]

    def signature(self, instance):
        return str(tuple(dict_get(instance, field) for field in self.fields))

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        if self.max_instances is None:
            for instance in stream:
                yield instance

        counter = Counter()
        for instance in stream:
            counter[self.signature(instance)] += 1
        all_keys = counter.keys()
        if len(counter) == 0:
            return

        if self.max_instances is not None and len(all_keys) > self.max_instances:
            raise Exception(
                f"Can not generate a stream with at least one example per label, because the max instances requested  {self.max_instances} is smaller than the number of different labels {len(all_keys)}"
                f" ({len(all_keys)}"
            )

        counter = Counter()
        used_indices = set()
        selected_elements = []
        # select at least one per class
        for idx, instance in enumerate(stream):
            sign = self.signature(instance)
            if counter[sign] == 0:
                counter[sign] += 1
                used_indices.add(idx)
                selected_elements.append(
                    instance
                )  # collect all elements first to allow shuffling of both groups

        # select more to reach self.max_instances examples
        for idx, instance in enumerate(stream):
            if idx not in used_indices:
                if self.max_instances is None or len(used_indices) < self.max_instances:
                    used_indices.add(idx)
                    selected_elements.append(
                        instance
                    )  # collect all elements first to allow shuffling of both groups

        # shuffle elements to avoid having one element from each class appear first
        random_generator = new_random_generator(sub_seed=selected_elements)
        random_generator.shuffle(selected_elements)
        yield from selected_elements


class LengthBalancer(DeterministicBalancer):
    """Balances by a signature that reflects the total length of the fields' values, quantized into integer segments.

    Args:
        segments_boundaries (List[int]):
            distinct integers sorted in increasing order, that map a given total length
            into the index of the least of them that exceeds the given total length.
            (If none exceeds -- into one index beyond, namely, the length of segments_boundaries)
        fields (Optional, List[str]):
            the total length of the values of these fields goes through the quantization described above


    Example:
        when input ``[{"a": [1, 3], "b": 0, "id": 0}, {"a": [1, 3], "b": 0, "id": 1}, {"a": [], "b": "a", "id": 2}]``
        is fed into ``LengthBalancer(fields=["a"], segments_boundaries=[1])``,
        input instances will be counted and balanced against two categories:
        empty total length (less than 1), and non-empty.
    """

    segments_boundaries: List[int]
    fields: Optional[List[str]]

    def signature(self, instance):
        total_len = 0
        for field_name in self.fields:
            total_len += len(dict_get(instance, field_name))
        for i, val in enumerate(self.segments_boundaries):
            if total_len < val:
                return i
        return i + 1


class DownloadError(Exception):
    def __init__(
        self,
        message,
    ):
        self.__super__(message)


class UnexpectedHttpCodeError(Exception):
    def __init__(self, http_code):
        self.__super__(f"unexpected http code {http_code}")


class DownloadOperator(SideEffectOperator):
    """Operator for downloading a file from a given URL to a specified local path.

    Args:
        source (str):
            URL of the file to be downloaded.
        target (str):
            Local path where the downloaded file should be saved.
    """

    source: str
    target: str

    def process(self):
        try:
            response = requests.get(self.source, allow_redirects=True)
        except Exception as e:
            raise DownloadError(f"Unabled to download {self.source}") from e
        if response.status_code != 200:
            raise UnexpectedHttpCodeError(response.status_code)
        with open(self.target, "wb") as f:
            f.write(response.content)


class ExtractZipFile(SideEffectOperator):
    """Operator for extracting files from a zip archive.

    Args:
        zip_file (str):
            Path of the zip file to be extracted.
        target_dir (str):
            Directory where the contents of the zip file will be extracted.
    """

    zip_file: str
    target_dir: str

    def process(self):
        with zipfile.ZipFile(self.zip_file) as zf:
            zf.extractall(self.target_dir)


class DuplicateInstances(StreamOperator):
    """Operator which duplicates each instance in stream a given number of times.

    Args:
        num_duplications (int):
            How many times each instance should be duplicated (1 means no duplication).
        duplication_index_field (Optional[str]):
            If given, then additional field with specified name is added to each duplicated instance,
            which contains id of a given duplication. Defaults to None, so no field is added.
    """

    num_duplications: int
    duplication_index_field: Optional[str] = None

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        for instance in stream:
            for idx in range(self.num_duplications):
                duplicate = recursive_shallow_copy(instance)
                if self.duplication_index_field:
                    duplicate.update({self.duplication_index_field: idx})
                yield duplicate

    def verify(self):
        if not isinstance(self.num_duplications, int) or self.num_duplications < 1:
            raise ValueError(
                f"num_duplications must be an integer equal to or greater than 1. "
                f"Got: {self.num_duplications}."
            )

        if self.duplication_index_field is not None and not isinstance(
            self.duplication_index_field, str
        ):
            raise ValueError(
                f"If given, duplication_index_field must be a string. "
                f"Got: {self.duplication_index_field}"
            )


class CollateInstances(StreamOperator):
    """Operator which collates values from multiple instances to a single instance.

    Each field becomes the list of values of corresponding field of collated `batch_size` of instances.

    Attributes:
        batch_size (int)

    Example:
        .. code-block:: text

            CollateInstances(batch_size=2)

            Given inputs = [
                {"a": 1, "b": 2},
                {"a": 2, "b": 2},
                {"a": 3, "b": 2},
                {"a": 4, "b": 2},
                {"a": 5, "b": 2}
            ]

            Returns targets = [
                {"a": [1,2], "b": [2,2]},
                {"a": [3,4], "b": [2,2]},
                {"a": [5], "b": [2]},
            ]


    """

    batch_size: int

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        stream = list(stream)
        for i in range(0, len(stream), self.batch_size):
            batch = stream[i : i + self.batch_size]
            new_instance = {}
            for a_field in batch[0]:
                if a_field == "data_classification_policy":
                    flattened_list = [
                        classification
                        for instance in batch
                        for classification in instance[a_field]
                    ]
                    new_instance[a_field] = sorted(set(flattened_list))
                else:
                    new_instance[a_field] = [instance[a_field] for instance in batch]
            yield new_instance

    def verify(self):
        if not isinstance(self.batch_size, int) or self.batch_size < 1:
            raise ValueError(
                f"batch_size must be an integer equal to or greater than 1. "
                f"Got: {self.batch_size}."
            )


class WikipediaFetcher(FieldOperator):
    mode: Literal["summary", "text"] = "text"
    _requirements_list = ["Wikipedia-API"]

    def prepare(self):
        super().prepare()
        import wikipediaapi

        self.wikipedia = wikipediaapi.Wikipedia("Unitxt")

    def process_value(self, value: Any) -> Any:
        title = value.split("/")[-1]
        page = self.wikipedia.page(title)

        return {"title": page.title, "body": getattr(page, self.mode)}