Elron commited on
Commit
460af71
·
verified ·
1 Parent(s): 37ba515

Upload operators.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. operators.py +32 -22
operators.py CHANGED
@@ -180,7 +180,7 @@ class MapInstanceValues(StreamInstanceOperator):
180
  if value is not None:
181
  if (self.process_every_value is True) and (not isinstance(value, list)):
182
  raise ValueError(
183
- f"'process_every_field' == True is allowed only when all fields which have mappers, i.e., {list(self.mappers.keys())} are lists. Instace = {instance}"
184
  )
185
  if isinstance(value, list) and self.process_every_value:
186
  for i, val in enumerate(value):
@@ -285,7 +285,7 @@ class RemoveFields(StreamInstanceOperator):
285
  return instance
286
 
287
 
288
- class FieldOperator(StreamInstanceOperator):
289
  """A general stream instance operator that processes the values of a field (or multiple ones).
290
 
291
  Args:
@@ -336,7 +336,7 @@ class FieldOperator(StreamInstanceOperator):
336
  # self._field_to_field is built explicitly by pairs, or copied from argument 'field_to_field'
337
  if self.field_to_field is None:
338
  return
339
- # for backward compatibility also allow list of tupples of two strings
340
  if isoftype(self.field_to_field, List[List[str]]) or isoftype(
341
  self.field_to_field, List[Tuple[str, str]]
342
  ):
@@ -365,7 +365,7 @@ class FieldOperator(StreamInstanceOperator):
365
  )
366
 
367
  @abstractmethod
368
- def process_value(self, value: Any) -> Any:
369
  pass
370
 
371
  def prepare(self):
@@ -408,9 +408,12 @@ class FieldOperator(StreamInstanceOperator):
408
  ) from e
409
  try:
410
  if self.process_every_value:
411
- new_value = [self.process_value(value) for value in old_value]
 
 
 
412
  else:
413
- new_value = self.process_value(old_value)
414
  except Exception as e:
415
  raise ValueError(
416
  f"Failed to process '{from_field}' from {instance} due to : {e}"
@@ -427,6 +430,15 @@ class FieldOperator(StreamInstanceOperator):
427
  return instance
428
 
429
 
 
 
 
 
 
 
 
 
 
430
  class RenameFields(FieldOperator):
431
  """Renames fields.
432
 
@@ -773,11 +785,11 @@ class Apply(StreamInstanceOperator):
773
  return ".".join(parts)
774
 
775
  def str_to_function(self, function_str: str) -> Callable:
776
- splitted = function_str.split(".", 1)
777
- if len(splitted) == 1:
778
- return __builtins__[splitted[0]]
779
 
780
- module_name, function_name = splitted
781
  if module_name in __builtins__:
782
  obj = __builtins__[module_name]
783
  elif module_name in globals():
@@ -892,34 +904,32 @@ class TakeByField(StreamInstanceOperator):
892
  return instance
893
 
894
 
895
- class Perturbate(FieldOperator):
896
- """Slightly perturbates the contents of 'field'. Could be Handy for imitating prediction from given target.
897
 
898
  When task was classification, argument 'select_from' can be used to list the other potential classes, as a
899
  relevant perturbation
900
  """
901
 
902
  select_from: List[Any] = []
903
- percentage_to_perturbate: int = 1 # 1 percent
904
 
905
  def verify(self):
906
  assert (
907
- 0 <= self.percentage_to_perturbate and self.percentage_to_perturbate <= 100
908
- ), f"'percentage_to_perturbate' should be in the range 0..100. Received {self.percentage_to_perturbate}"
909
 
910
  def prepare(self):
911
  super().prepare()
912
  self.random_generator = new_random_generator(sub_seed="CopyWithPerturbation")
913
 
914
  def process_value(self, value: Any) -> Any:
915
- perturbate = (
916
- self.random_generator.randint(1, 100) <= self.percentage_to_perturbate
917
- )
918
- if not perturbate:
919
  return value
920
 
921
  if value in self.select_from:
922
- # 80% of cases, return a decent class, otherwise, perturbate the value itself as follows
923
  if self.random_generator.random() < 0.8:
924
  return self.random_generator.choice(self.select_from)
925
 
@@ -1397,7 +1407,7 @@ class ExtractMostCommonFieldValues(MultiStreamOperator):
1397
  else:
1398
  # content of 'field' is a list and process_every_value == True: add one occurrence on behalf of each individual value
1399
  counter.update(instance[self.field])
1400
- # here counter counts occurrences of individual values, or tupples.
1401
  values_and_counts = counter.most_common()
1402
  if self.overall_top_frequency_percent < 100:
1403
  top_frequency = (
@@ -1606,7 +1616,7 @@ class ApplyMetric(SingleStreamOperator, ArtifactFetcherMixin):
1606
  # by the first listed metric (as desired).
1607
  metric_names = list(reversed(metric_names))
1608
 
1609
- # Workaround: The metric/MetricPipeline modifies the stream itself, sometines making it incompatible
1610
  # for further metrics' processing, instead of just modifying the score field.
1611
  # Here we keep all the fields besides the score, and restore them after the metric finishes.
1612
  first_instance = stream.peek()
 
180
  if value is not None:
181
  if (self.process_every_value is True) and (not isinstance(value, list)):
182
  raise ValueError(
183
+ f"'process_every_field' == True is allowed only when all fields which have mappers, i.e., {list(self.mappers.keys())} are lists. Instance = {instance}"
184
  )
185
  if isinstance(value, list) and self.process_every_value:
186
  for i, val in enumerate(value):
 
285
  return instance
286
 
287
 
288
+ class InstanceFieldOperator(StreamInstanceOperator):
289
  """A general stream instance operator that processes the values of a field (or multiple ones).
290
 
291
  Args:
 
336
  # self._field_to_field is built explicitly by pairs, or copied from argument 'field_to_field'
337
  if self.field_to_field is None:
338
  return
339
+ # for backward compatibility also allow list of tuples of two strings
340
  if isoftype(self.field_to_field, List[List[str]]) or isoftype(
341
  self.field_to_field, List[Tuple[str, str]]
342
  ):
 
365
  )
366
 
367
  @abstractmethod
368
+ def process_instance_value(self, value: Any, instance: Dict[str, Any]):
369
  pass
370
 
371
  def prepare(self):
 
408
  ) from e
409
  try:
410
  if self.process_every_value:
411
+ new_value = [
412
+ self.process_instance_value(value, instance)
413
+ for value in old_value
414
+ ]
415
  else:
416
+ new_value = self.process_instance_value(old_value, instance)
417
  except Exception as e:
418
  raise ValueError(
419
  f"Failed to process '{from_field}' from {instance} due to : {e}"
 
430
  return instance
431
 
432
 
433
+ class FieldOperator(InstanceFieldOperator):
434
+ def process_instance_value(self, value: Any, instance: Dict[str, Any]):
435
+ return self.process_value(value)
436
+
437
+ @abstractmethod
438
+ def process_value(self, value: Any) -> Any:
439
+ pass
440
+
441
+
442
  class RenameFields(FieldOperator):
443
  """Renames fields.
444
 
 
785
  return ".".join(parts)
786
 
787
  def str_to_function(self, function_str: str) -> Callable:
788
+ parts = function_str.split(".", 1)
789
+ if len(parts) == 1:
790
+ return __builtins__[parts[0]]
791
 
792
+ module_name, function_name = parts
793
  if module_name in __builtins__:
794
  obj = __builtins__[module_name]
795
  elif module_name in globals():
 
904
  return instance
905
 
906
 
907
+ class Perturb(FieldOperator):
908
+ """Slightly perturbs the contents of 'field'. Could be Handy for imitating prediction from given target.
909
 
910
  When task was classification, argument 'select_from' can be used to list the other potential classes, as a
911
  relevant perturbation
912
  """
913
 
914
  select_from: List[Any] = []
915
+ percentage_to_perturb: int = 1 # 1 percent
916
 
917
  def verify(self):
918
  assert (
919
+ 0 <= self.percentage_to_perturb and self.percentage_to_perturb <= 100
920
+ ), f"'percentage_to_perturb' should be in the range 0..100. Received {self.percentage_to_perturb}"
921
 
922
  def prepare(self):
923
  super().prepare()
924
  self.random_generator = new_random_generator(sub_seed="CopyWithPerturbation")
925
 
926
  def process_value(self, value: Any) -> Any:
927
+ perturb = self.random_generator.randint(1, 100) <= self.percentage_to_perturb
928
+ if not perturb:
 
 
929
  return value
930
 
931
  if value in self.select_from:
932
+ # 80% of cases, return a decent class, otherwise, perturb the value itself as follows
933
  if self.random_generator.random() < 0.8:
934
  return self.random_generator.choice(self.select_from)
935
 
 
1407
  else:
1408
  # content of 'field' is a list and process_every_value == True: add one occurrence on behalf of each individual value
1409
  counter.update(instance[self.field])
1410
+ # here counter counts occurrences of individual values, or tuples.
1411
  values_and_counts = counter.most_common()
1412
  if self.overall_top_frequency_percent < 100:
1413
  top_frequency = (
 
1616
  # by the first listed metric (as desired).
1617
  metric_names = list(reversed(metric_names))
1618
 
1619
+ # Workaround: The metric/MetricPipeline modifies the stream itself, sometimes making it incompatible
1620
  # for further metrics' processing, instead of just modifying the score field.
1621
  # Here we keep all the fields besides the score, and restore them after the metric finishes.
1622
  first_instance = stream.peek()