Spaces:
Sleeping
Sleeping
Test Training Speed
- Test Commands
You need to use the following two commands to test the Partial FC training performance. The number of identites is 3 millions (synthetic data), turn mixed precision training on, backbone is resnet50, batch size is 1024.
# Model Parallel
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/3millions
# Partial FC 0.1
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/3millions_pfc
- GPU Memory
# (Model Parallel) gpustat -i
[0] Tesla V100-SXM2-32GB | 64'C, 94 % | 30338 / 32510 MB
[1] Tesla V100-SXM2-32GB | 60'C, 99 % | 28876 / 32510 MB
[2] Tesla V100-SXM2-32GB | 60'C, 99 % | 28872 / 32510 MB
[3] Tesla V100-SXM2-32GB | 69'C, 99 % | 28872 / 32510 MB
[4] Tesla V100-SXM2-32GB | 66'C, 99 % | 28888 / 32510 MB
[5] Tesla V100-SXM2-32GB | 60'C, 99 % | 28932 / 32510 MB
[6] Tesla V100-SXM2-32GB | 68'C, 100 % | 28916 / 32510 MB
[7] Tesla V100-SXM2-32GB | 65'C, 99 % | 28860 / 32510 MB
# (Partial FC 0.1) gpustat -i
[0] Tesla V100-SXM2-32GB | 60'C, 95 % | 10488 / 32510 MB โยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท
[1] Tesla V100-SXM2-32GB | 60'C, 97 % | 10344 / 32510 MB โยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท
[2] Tesla V100-SXM2-32GB | 61'C, 95 % | 10340 / 32510 MB โยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท
[3] Tesla V100-SXM2-32GB | 66'C, 95 % | 10340 / 32510 MB โยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท
[4] Tesla V100-SXM2-32GB | 65'C, 94 % | 10356 / 32510 MB โยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท
[5] Tesla V100-SXM2-32GB | 61'C, 95 % | 10400 / 32510 MB โยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท
[6] Tesla V100-SXM2-32GB | 68'C, 96 % | 10384 / 32510 MB โยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท
[7] Tesla V100-SXM2-32GB | 64'C, 95 % | 10328 / 32510 MB โยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท
- Training Speed
# (Model Parallel) trainging.log
Training: Speed 2271.33 samples/sec Loss 1.1624 LearningRate 0.2000 Epoch: 0 Global Step: 100
Training: Speed 2269.94 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 150
Training: Speed 2272.67 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 200
Training: Speed 2266.55 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 250
Training: Speed 2272.54 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 300
# (Partial FC 0.1) trainging.log
Training: Speed 5299.56 samples/sec Loss 1.0965 LearningRate 0.2000 Epoch: 0 Global Step: 100
Training: Speed 5296.37 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 150
Training: Speed 5304.37 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 200
Training: Speed 5274.43 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 250
Training: Speed 5300.10 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 300
In this test case, Partial FC 0.1 only use1 1/3 of the GPU memory of the model parallel, and the training speed is 2.5 times faster than the model parallel.
Speed Benchmark
- Training speed of different parallel methods (samples/second), Tesla V100 32GB * 8. (Larger is better)
Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 |
---|---|---|---|
125000 | 4681 | 4824 | 5004 |
250000 | 4047 | 4521 | 4976 |
500000 | 3087 | 4013 | 4900 |
1000000 | 2090 | 3449 | 4803 |
1400000 | 1672 | 3043 | 4738 |
2000000 | - | 2593 | 4626 |
4000000 | - | 1748 | 4208 |
5500000 | - | 1389 | 3975 |
8000000 | - | - | 3565 |
16000000 | - | - | 2679 |
29000000 | - | - | 1855 |
- GPU memory cost of different parallel methods (GB per GPU), Tesla V100 32GB * 8. (Smaller is better)
Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 |
---|---|---|---|
125000 | 7358 | 5306 | 4868 |
250000 | 9940 | 5826 | 5004 |
500000 | 14220 | 7114 | 5202 |
1000000 | 23708 | 9966 | 5620 |
1400000 | 32252 | 11178 | 6056 |
2000000 | - | 13978 | 6472 |
4000000 | - | 23238 | 8284 |
5500000 | - | 32188 | 9854 |
8000000 | - | - | 12310 |
16000000 | - | - | 19950 |
29000000 | - | - | 32324 |