|
import os, sys |
|
import librosa |
|
import soundfile as sf |
|
import numpy as np |
|
import re |
|
import unicodedata |
|
from fairseq import checkpoint_utils |
|
import wget |
|
|
|
import logging |
|
|
|
logging.getLogger("fairseq").setLevel(logging.WARNING) |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
|
|
|
|
def load_audio(file, sample_rate): |
|
try: |
|
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
audio, sr = sf.read(file) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.T) |
|
if sr != sample_rate: |
|
audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate) |
|
except Exception as error: |
|
raise RuntimeError(f"An error occurred loading the audio: {error}") |
|
|
|
return audio.flatten() |
|
|
|
|
|
def format_title(title): |
|
formatted_title = ( |
|
unicodedata.normalize("NFKD", title).encode("ascii", "ignore").decode("utf-8") |
|
) |
|
formatted_title = re.sub(r"[\u2500-\u257F]+", "", formatted_title) |
|
formatted_title = re.sub(r"[^\w\s.-]", "", formatted_title) |
|
formatted_title = re.sub(r"\s+", "_", formatted_title) |
|
return formatted_title |
|
|
|
|
|
def load_embedding(embedder_model, custom_embedder=None): |
|
embedder_root = os.path.join(now_dir, "rvc", "models", "embedders") |
|
embedding_list = { |
|
"contentvec": os.path.join(embedder_root, "contentvec_base.pt"), |
|
"japanese-hubert-base": os.path.join(embedder_root, "japanese-hubert-base.pt"), |
|
"chinese-hubert-large": os.path.join(embedder_root, "chinese-hubert-large.pt"), |
|
} |
|
|
|
online_embedders = { |
|
"japanese-hubert-base": "https://huggingface.co/rinna/japanese-hubert-base/resolve/main/fairseq/model.pt", |
|
"chinese-hubert-large": "https://huggingface.co/TencentGameMate/chinese-hubert-large/resolve/main/chinese-hubert-large-fairseq-ckpt.pt", |
|
} |
|
|
|
if embedder_model == "custom": |
|
model_path = custom_embedder |
|
if not custom_embedder and os.path.exists(custom_embedder): |
|
model_path = embedding_list["contentvec"] |
|
else: |
|
model_path = embedding_list[embedder_model] |
|
if embedder_model in online_embedders: |
|
if not os.path.exists(model_path): |
|
url = online_embedders[embedder_model] |
|
print(f"\nDownloading {url} to {model_path}...") |
|
wget.download(url, out=model_path) |
|
else: |
|
model_path = embedding_list["contentvec"] |
|
|
|
models = checkpoint_utils.load_model_ensemble_and_task( |
|
[model_path], |
|
suffix="", |
|
) |
|
|
|
|
|
return models |
|
|