import os, sys import librosa import soundfile as sf import numpy as np import re import unicodedata from fairseq import checkpoint_utils import wget import logging logging.getLogger("fairseq").setLevel(logging.WARNING) now_dir = os.getcwd() sys.path.append(now_dir) def load_audio(file, sample_rate): try: file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") audio, sr = sf.read(file) if len(audio.shape) > 1: audio = librosa.to_mono(audio.T) if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate) except Exception as error: raise RuntimeError(f"An error occurred loading the audio: {error}") return audio.flatten() def format_title(title): formatted_title = ( unicodedata.normalize("NFKD", title).encode("ascii", "ignore").decode("utf-8") ) formatted_title = re.sub(r"[\u2500-\u257F]+", "", formatted_title) formatted_title = re.sub(r"[^\w\s.-]", "", formatted_title) formatted_title = re.sub(r"\s+", "_", formatted_title) return formatted_title def load_embedding(embedder_model, custom_embedder=None): embedder_root = os.path.join(now_dir, "rvc", "models", "embedders") embedding_list = { "contentvec": os.path.join(embedder_root, "contentvec_base.pt"), "japanese-hubert-base": os.path.join(embedder_root, "japanese-hubert-base.pt"), "chinese-hubert-large": os.path.join(embedder_root, "chinese-hubert-large.pt"), } online_embedders = { "japanese-hubert-base": "https://huggingface.co/rinna/japanese-hubert-base/resolve/main/fairseq/model.pt", "chinese-hubert-large": "https://huggingface.co/TencentGameMate/chinese-hubert-large/resolve/main/chinese-hubert-large-fairseq-ckpt.pt", } if embedder_model == "custom": model_path = custom_embedder if not custom_embedder and os.path.exists(custom_embedder): model_path = embedding_list["contentvec"] else: model_path = embedding_list[embedder_model] if embedder_model in online_embedders: if not os.path.exists(model_path): url = online_embedders[embedder_model] print(f"\nDownloading {url} to {model_path}...") wget.download(url, out=model_path) else: model_path = embedding_list["contentvec"] models = checkpoint_utils.load_model_ensemble_and_task( [model_path], suffix="", ) # print(f"Embedding model {embedder_model} loaded successfully.") return models