YOLOv8-TO / app.py
tomrb's picture
m
bf208bb
import gradio as gr
import sys
sys.path.append('./utils')
from yolo_utils import preprocess_image_pil, run_model, process_results, plot_results_gradio
import matplotlib.pyplot as plt
import io
try:
from ultralytics import YOLO
except ImportError:
import os
os.system('pip install ./yolov8-to')
from ultralytics import YOLO
def process_image(image,conf,iou):
model = YOLO('./trained_models/nano.pt')
# Preprocess the image
preprocessed_image = preprocess_image_pil(image, threshold_value=0.9, upscale=False)
# Run the model
results = run_model(model, preprocessed_image, conf=conf, iou=iou, imgsz=640)
# Process the results
input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss = process_results(results, preprocessed_image)
# Plot the results
fig = plot_results_gradio(input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss)
# Convert the plot to an image
return fig
# Create the Gradio interface
title = "YOLOV8-TO Demo App"
description = """
- **Upload an image** and see the processed results. You can replace the default image with whatever you want to upload.
- **Adjust the confidence and IOU thresholds** as needed.
- Runs the **YOLOv8-TO Nano model size**.
- **Runs on 2 CPU cores**, so please be patient!
- For more details, check out the [GitHub repository](https://github.com/COSIM-Lab/YOLOv8-TO).
- Learn more about the methodology in the related [research paper](https://arxiv.org/abs/2404.18763).
"""
iface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type='pil',value ="https://huggingface.co/spaces/tomrb/YOLOv8-TO/resolve/main/test.png", label="Input Image"),
gr.Slider(minimum=0, maximum=1, value=0.1, label="Confidence Threshold"),
gr.Slider(minimum=0, maximum=1, value=0.5, label="IOU Threshold")
],
outputs="image",
title=title,
description=description
)
iface.launch()