import gradio as gr import sys sys.path.append('./utils') from yolo_utils import preprocess_image_pil, run_model, process_results, plot_results_gradio import matplotlib.pyplot as plt import io try: from ultralytics import YOLO except ImportError: import os os.system('pip install ./yolov8-to') from ultralytics import YOLO def process_image(image,conf,iou): model = YOLO('./trained_models/nano.pt') # Preprocess the image preprocessed_image = preprocess_image_pil(image, threshold_value=0.9, upscale=False) # Run the model results = run_model(model, preprocessed_image, conf=conf, iou=iou, imgsz=640) # Process the results input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss = process_results(results, preprocessed_image) # Plot the results fig = plot_results_gradio(input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss) # Convert the plot to an image return fig # Create the Gradio interface title = "YOLOV8-TO Demo App" description = """ - **Upload an image** and see the processed results. You can replace the default image with whatever you want to upload. - **Adjust the confidence and IOU thresholds** as needed. - Runs the **YOLOv8-TO Nano model size**. - **Runs on 2 CPU cores**, so please be patient! - For more details, check out the [GitHub repository](https://github.com/COSIM-Lab/YOLOv8-TO). - Learn more about the methodology in the related [research paper](https://arxiv.org/abs/2404.18763). """ iface = gr.Interface( fn=process_image, inputs=[ gr.Image(type='pil',value ="https://huggingface.co/spaces/tomrb/YOLOv8-TO/resolve/main/test.png", label="Input Image"), gr.Slider(minimum=0, maximum=1, value=0.1, label="Confidence Threshold"), gr.Slider(minimum=0, maximum=1, value=0.5, label="IOU Threshold") ], outputs="image", title=title, description=description ) iface.launch()