|
|
|
|
|
import torch |
|
|
|
from ultralytics.engine.predictor import BasePredictor |
|
from ultralytics.engine.results import Results |
|
from ultralytics.utils import ops |
|
|
|
|
|
class NASPredictor(BasePredictor): |
|
|
|
def postprocess(self, preds_in, img, orig_imgs): |
|
"""Postprocess predictions and returns a list of Results objects.""" |
|
|
|
|
|
boxes = ops.xyxy2xywh(preds_in[0][0]) |
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) |
|
|
|
preds = ops.non_max_suppression(preds, |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
classes=self.args.classes) |
|
|
|
results = [] |
|
is_list = isinstance(orig_imgs, list) |
|
for i, pred in enumerate(preds): |
|
orig_img = orig_imgs[i] if is_list else orig_imgs |
|
if is_list: |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
img_path = self.batch[0][i] |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) |
|
return results |
|
|