# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import ops class NASPredictor(BasePredictor): def postprocess(self, preds_in, img, orig_imgs): """Postprocess predictions and returns a list of Results objects.""" # Cat boxes and class scores boxes = ops.xyxy2xywh(preds_in[0][0]) preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) preds = ops.non_max_suppression(preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, classes=self.args.classes) results = [] is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor for i, pred in enumerate(preds): orig_img = orig_imgs[i] if is_list else orig_imgs if is_list: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) img_path = self.batch[0][i] results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) return results