Spaces:
Runtime error
Runtime error
import warnings | |
from typing import Optional, Tuple | |
import torch | |
from flash_attn import __version__ as flash_attn_version | |
from flash_attn.bert_padding import pad_input, unpad_input | |
from flash_attn.flash_attn_interface import ( | |
flash_attn_func, | |
flash_attn_varlen_kvpacked_func, | |
) | |
from transformers.models.llama.modeling_llama import ( | |
LlamaAttention, | |
LlamaModel, | |
rotate_half, | |
) | |
def apply_rotary_pos_emb(q, k, cos_sin, position_ids): | |
gather_indices = position_ids[:, :, None, None] # [bsz, seq_len, 1, 1] | |
gather_indices = gather_indices.repeat( | |
1, 1, cos_sin[0].shape[1], cos_sin[0].shape[3] | |
) | |
bsz = gather_indices.shape[0] | |
cos, sin = ( | |
torch.gather(x.transpose(1, 2).repeat(bsz, 1, 1, 1), 1, gather_indices) | |
for x in cos_sin | |
) | |
q, k = ((x * cos) + (rotate_half(x) * sin) for x in (q, k)) | |
return q, k | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
padding_mask: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
warnings.warn( | |
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." | |
) | |
bsz, q_len, _ = hidden_states.size() | |
kv_heads = getattr(self, "num_key_value_heads", self.num_heads) | |
q, k, v = ( | |
op(hidden_states).view(bsz, q_len, nh, self.head_dim) | |
for op, nh in ( | |
(self.q_proj, self.num_heads), | |
(self.k_proj, kv_heads), | |
(self.v_proj, kv_heads), | |
) | |
) | |
# shape: (b, s, num_heads, head_dim) | |
kv_seq_len = k.shape[1] | |
past_kv_len = 0 | |
if past_key_value is not None: | |
past_kv_len = past_key_value[0].shape[2] | |
kv_seq_len += past_kv_len | |
cos_sin = self.rotary_emb(v, seq_len=kv_seq_len) | |
q, k = apply_rotary_pos_emb(q, k, cos_sin, position_ids) | |
if past_key_value is not None: | |
assert ( | |
flash_attn_version >= "2.1.0" | |
), "past_key_value support requires flash-attn >= 2.1.0" | |
# reuse k, v | |
k = torch.cat([past_key_value[0].transpose(1, 2), k], dim=1) | |
v = torch.cat([past_key_value[1].transpose(1, 2), v], dim=1) | |
past_key_value = (k.transpose(1, 2), v.transpose(1, 2)) if use_cache else None | |
if attention_mask is None: | |
output = flash_attn_func(q, k, v, 0.0, softmax_scale=None, causal=True).view( | |
bsz, q_len, -1 | |
) | |
else: | |
q, indices, cu_q_lens, max_s = unpad_input(q, attention_mask[:, -q_len:]) | |
# We can skip concat and call unpad twice but seems better to call unpad only once. | |
kv, _, cu_k_lens, max_k = unpad_input( | |
torch.stack((k, v), dim=2), attention_mask | |
) | |
output_unpad = flash_attn_varlen_kvpacked_func( | |
q, | |
kv, | |
cu_q_lens, | |
cu_k_lens, | |
max_s, | |
max_k, | |
0.0, | |
softmax_scale=None, | |
causal=True, | |
) | |
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim) | |
output = pad_input(output_unpad, indices, bsz, q_len) | |
return self.o_proj(output), None, past_key_value | |
# Disable the transformation of the attention mask in LlamaModel as flash attention | |
# takes a boolean key_padding_mask. Fills in the past kv length for use in forward. | |
def _prepare_decoder_attention_mask( | |
self, attention_mask, input_shape, inputs_embeds, past_key_values_length | |
): | |
# [bsz, seq_len] | |
if past_key_values_length > 0 and attention_mask is not None: | |
attention_mask = torch.cat( | |
( | |
torch.full( | |
(input_shape[0], past_key_values_length), | |
True, | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
), | |
attention_mask, | |
), | |
dim=-1, | |
) | |
if attention_mask is not None and torch.all(attention_mask): | |
return None # This uses the faster call when training with full samples | |
return attention_mask | |
def replace_llama_attn_with_flash_attn(): | |
cuda_major, cuda_minor = torch.cuda.get_device_capability() | |
if cuda_major < 8: | |
warnings.warn( | |
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward." | |
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593" | |
) | |
LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask | |
LlamaAttention.forward = forward | |
def test(): | |
from fastchat.train.llama_flash_attn_monkey_patch import forward as fastchat_forward | |
from transformers.models.llama.configuration_llama import LlamaConfig | |
config = LlamaConfig( | |
hidden_size=1024, | |
intermediate_size=128, | |
num_hidden_layers=1, | |
num_attention_heads=8, | |
max_position_embeddings=16, | |
) | |
device = torch.device("cuda") | |
model = LlamaModel(config) | |
attn = LlamaAttention(config).to(device).half() | |
bsz, hs, seqlen = 2, config.hidden_size, config.max_position_embeddings | |
position_ids = torch.arange(seqlen, dtype=torch.long, device=device).view( | |
-1, seqlen | |
) | |
mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device) | |
for i in range(4): | |
hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device) | |
if i: | |
mask[0, -i:] = False | |
mask[1, :i] = False | |
lmask = model._prepare_decoder_attention_mask(mask, hidden.shape[:2], hidden, 0) | |
ref, _, _ = attn.forward( | |
hidden, attention_mask=lmask, position_ids=position_ids | |
) | |
fast, _, _ = fastchat_forward( | |
attn, hidden, attention_mask=mask, position_ids=position_ids | |
) | |
lmask = _prepare_decoder_attention_mask( | |
model, mask, hidden.shape[:2], hidden, 0 | |
) | |
test, _, _ = forward( | |
attn, hidden, attention_mask=lmask, position_ids=position_ids | |
) | |
print(f"Mean(abs(ref)) = {torch.mean(torch.abs(ref))}") | |
print(f"Mean(abs(ref - fast)) = {torch.mean(torch.abs(ref - fast))}") | |
print(f"Mean(abs(ref - test)) = {torch.mean(torch.abs(ref - test))}") | |
print(f"Mean(abs(fast - test)) = {torch.mean(torch.abs(fast - test))}") | |
print(f"allclose(fast, test) = {torch.allclose(fast, test)}") | |
with torch.no_grad(): | |
# Also check that past_kv is handled properly | |
hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device) | |
part_len = seqlen // 4 | |
assert part_len * 4 == seqlen | |
mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device) | |
mask[0, -2:] = False | |
lmask = _prepare_decoder_attention_mask( | |
model, mask, hidden.shape[:2], hidden, 0 | |
) | |
oneshot, _, _ = forward( | |
attn, hidden, attention_mask=lmask, position_ids=position_ids | |
) | |
parts = [] | |
past_kv, past_kv_len = None, 0 | |
for i in range(4): | |
start = part_len * i | |
end = start + part_len | |
hidden_part = hidden[:, start:end, ...] | |
lmask = _prepare_decoder_attention_mask( | |
model, | |
mask[:, start:end], | |
hidden_part.shape[:2], | |
hidden_part, | |
past_kv_len, | |
) | |
part, _, past_kv = forward( | |
attn, | |
hidden_part.clone(), | |
attention_mask=lmask, | |
position_ids=position_ids[:, start:end], | |
past_key_value=past_kv, | |
use_cache=True, | |
) | |
parts.append(part) | |
past_kv_len = past_kv[0].shape[2] | |
print( | |
f"allclose(oneshot[:, 0], parts[0]) = {torch.allclose(oneshot[:, :part_len], parts[0])}" | |
) | |
print( | |
f"allclose(oneshot, parts) = {torch.allclose(oneshot, torch.cat(parts, dim=1))}" | |
) | |
if __name__ == "__main__": | |
test() | |