File size: 8,321 Bytes
ec0c335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import warnings
from typing import Optional, Tuple

import torch
from flash_attn import __version__ as flash_attn_version
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import (
    flash_attn_func,
    flash_attn_varlen_kvpacked_func,
)
from transformers.models.llama.modeling_llama import (
    LlamaAttention,
    LlamaModel,
    rotate_half,
)


def apply_rotary_pos_emb(q, k, cos_sin, position_ids):
    gather_indices = position_ids[:, :, None, None]  # [bsz, seq_len, 1, 1]
    gather_indices = gather_indices.repeat(
        1, 1, cos_sin[0].shape[1], cos_sin[0].shape[3]
    )
    bsz = gather_indices.shape[0]
    cos, sin = (
        torch.gather(x.transpose(1, 2).repeat(bsz, 1, 1, 1), 1, gather_indices)
        for x in cos_sin
    )
    q, k = ((x * cos) + (rotate_half(x) * sin) for x in (q, k))
    return q, k


def forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.Tensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
    padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    if output_attentions:
        warnings.warn(
            "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
        )

    bsz, q_len, _ = hidden_states.size()
    kv_heads = getattr(self, "num_key_value_heads", self.num_heads)

    q, k, v = (
        op(hidden_states).view(bsz, q_len, nh, self.head_dim)
        for op, nh in (
            (self.q_proj, self.num_heads),
            (self.k_proj, kv_heads),
            (self.v_proj, kv_heads),
        )
    )
    # shape: (b, s, num_heads, head_dim)

    kv_seq_len = k.shape[1]
    past_kv_len = 0
    if past_key_value is not None:
        past_kv_len = past_key_value[0].shape[2]
        kv_seq_len += past_kv_len

    cos_sin = self.rotary_emb(v, seq_len=kv_seq_len)
    q, k = apply_rotary_pos_emb(q, k, cos_sin, position_ids)

    if past_key_value is not None:
        assert (
            flash_attn_version >= "2.1.0"
        ), "past_key_value support requires flash-attn >= 2.1.0"
        # reuse k, v
        k = torch.cat([past_key_value[0].transpose(1, 2), k], dim=1)
        v = torch.cat([past_key_value[1].transpose(1, 2), v], dim=1)

    past_key_value = (k.transpose(1, 2), v.transpose(1, 2)) if use_cache else None

    if attention_mask is None:
        output = flash_attn_func(q, k, v, 0.0, softmax_scale=None, causal=True).view(
            bsz, q_len, -1
        )
    else:
        q, indices, cu_q_lens, max_s = unpad_input(q, attention_mask[:, -q_len:])
        # We can skip concat and call unpad twice but seems better to call unpad only once.
        kv, _, cu_k_lens, max_k = unpad_input(
            torch.stack((k, v), dim=2), attention_mask
        )
        output_unpad = flash_attn_varlen_kvpacked_func(
            q,
            kv,
            cu_q_lens,
            cu_k_lens,
            max_s,
            max_k,
            0.0,
            softmax_scale=None,
            causal=True,
        )
        output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
        output = pad_input(output_unpad, indices, bsz, q_len)

    return self.o_proj(output), None, past_key_value


# Disable the transformation of the attention mask in LlamaModel as flash attention
# takes a boolean key_padding_mask. Fills in the past kv length for use in forward.
def _prepare_decoder_attention_mask(
    self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
    # [bsz, seq_len]
    if past_key_values_length > 0 and attention_mask is not None:
        attention_mask = torch.cat(
            (
                torch.full(
                    (input_shape[0], past_key_values_length),
                    True,
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                ),
                attention_mask,
            ),
            dim=-1,
        )

    if attention_mask is not None and torch.all(attention_mask):
        return None  # This uses the faster call when training with full samples

    return attention_mask


def replace_llama_attn_with_flash_attn():
    cuda_major, cuda_minor = torch.cuda.get_device_capability()
    if cuda_major < 8:
        warnings.warn(
            "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
            "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
        )

    LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
    LlamaAttention.forward = forward


def test():
    from fastchat.train.llama_flash_attn_monkey_patch import forward as fastchat_forward
    from transformers.models.llama.configuration_llama import LlamaConfig

    config = LlamaConfig(
        hidden_size=1024,
        intermediate_size=128,
        num_hidden_layers=1,
        num_attention_heads=8,
        max_position_embeddings=16,
    )
    device = torch.device("cuda")
    model = LlamaModel(config)
    attn = LlamaAttention(config).to(device).half()
    bsz, hs, seqlen = 2, config.hidden_size, config.max_position_embeddings
    position_ids = torch.arange(seqlen, dtype=torch.long, device=device).view(
        -1, seqlen
    )

    mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device)
    for i in range(4):
        hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device)
        if i:
            mask[0, -i:] = False
            mask[1, :i] = False

        lmask = model._prepare_decoder_attention_mask(mask, hidden.shape[:2], hidden, 0)
        ref, _, _ = attn.forward(
            hidden, attention_mask=lmask, position_ids=position_ids
        )

        fast, _, _ = fastchat_forward(
            attn, hidden, attention_mask=mask, position_ids=position_ids
        )

        lmask = _prepare_decoder_attention_mask(
            model, mask, hidden.shape[:2], hidden, 0
        )
        test, _, _ = forward(
            attn, hidden, attention_mask=lmask, position_ids=position_ids
        )

        print(f"Mean(abs(ref)) = {torch.mean(torch.abs(ref))}")
        print(f"Mean(abs(ref - fast)) = {torch.mean(torch.abs(ref - fast))}")
        print(f"Mean(abs(ref - test)) = {torch.mean(torch.abs(ref - test))}")
        print(f"Mean(abs(fast - test)) = {torch.mean(torch.abs(fast - test))}")
        print(f"allclose(fast, test) = {torch.allclose(fast, test)}")

    with torch.no_grad():
        # Also check that past_kv is handled properly
        hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device)
        part_len = seqlen // 4
        assert part_len * 4 == seqlen
        mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device)
        mask[0, -2:] = False
        lmask = _prepare_decoder_attention_mask(
            model, mask, hidden.shape[:2], hidden, 0
        )
        oneshot, _, _ = forward(
            attn, hidden, attention_mask=lmask, position_ids=position_ids
        )
        parts = []
        past_kv, past_kv_len = None, 0
        for i in range(4):
            start = part_len * i
            end = start + part_len
            hidden_part = hidden[:, start:end, ...]
            lmask = _prepare_decoder_attention_mask(
                model,
                mask[:, start:end],
                hidden_part.shape[:2],
                hidden_part,
                past_kv_len,
            )
            part, _, past_kv = forward(
                attn,
                hidden_part.clone(),
                attention_mask=lmask,
                position_ids=position_ids[:, start:end],
                past_key_value=past_kv,
                use_cache=True,
            )
            parts.append(part)
            past_kv_len = past_kv[0].shape[2]

        print(
            f"allclose(oneshot[:, 0], parts[0]) = {torch.allclose(oneshot[:, :part_len], parts[0])}"
        )
        print(
            f"allclose(oneshot, parts) = {torch.allclose(oneshot, torch.cat(parts, dim=1))}"
        )


if __name__ == "__main__":
    test()