visual-arena / docs /exllama_v2.md
tianleliphoebe's picture
Upload folder using huggingface_hub
ec0c335 verified
# ExllamaV2 GPTQ Inference Framework
Integrated [ExllamaV2](https://github.com/turboderp/exllamav2) customized kernel into Fastchat to provide **Faster** GPTQ inference speed.
**Note: Exllama not yet support embedding REST API.**
## Install ExllamaV2
Setup environment (please refer to [this link](https://github.com/turboderp/exllamav2#how-to) for more details):
```bash
git clone https://github.com/turboderp/exllamav2
cd exllamav2
pip install -e .
```
Chat with the CLI:
```bash
python3 -m fastchat.serve.cli \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--enable-exllama
```
Start model worker:
```bash
# Download quantized model from huggingface
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g models/vicuna-7B-1.1-GPTQ-4bit-128g
# Load model with default configuration (max sequence length 4096, no GPU split setting).
python3 -m fastchat.serve.model_worker \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--enable-exllama
#Load model with max sequence length 2048, allocate 18 GB to CUDA:0 and 24 GB to CUDA:1.
python3 -m fastchat.serve.model_worker \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--enable-exllama \
--exllama-max-seq-len 2048 \
--exllama-gpu-split 18,24
```
`--exllama-cache-8bit` can be used to enable 8-bit caching with exllama and save some VRAM.
## Performance
Reference: https://github.com/turboderp/exllamav2#performance
| Model | Mode | Size | grpsz | act | V1: 3090Ti | V1: 4090 | V2: 3090Ti | V2: 4090 |
|------------|--------------|-------|-------|-----|------------|----------|------------|-------------|
| Llama | GPTQ | 7B | 128 | no | 143 t/s | 173 t/s | 175 t/s | **195** t/s |
| Llama | GPTQ | 13B | 128 | no | 84 t/s | 102 t/s | 105 t/s | **110** t/s |
| Llama | GPTQ | 33B | 128 | yes | 37 t/s | 45 t/s | 45 t/s | **48** t/s |
| OpenLlama | GPTQ | 3B | 128 | yes | 194 t/s | 226 t/s | 295 t/s | **321** t/s |
| CodeLlama | EXL2 4.0 bpw | 34B | - | - | - | - | 42 t/s | **48** t/s |
| Llama2 | EXL2 3.0 bpw | 7B | - | - | - | - | 195 t/s | **224** t/s |
| Llama2 | EXL2 4.0 bpw | 7B | - | - | - | - | 164 t/s | **197** t/s |
| Llama2 | EXL2 5.0 bpw | 7B | - | - | - | - | 144 t/s | **160** t/s |
| Llama2 | EXL2 2.5 bpw | 70B | - | - | - | - | 30 t/s | **35** t/s |
| TinyLlama | EXL2 3.0 bpw | 1.1B | - | - | - | - | 536 t/s | **635** t/s |
| TinyLlama | EXL2 4.0 bpw | 1.1B | - | - | - | - | 509 t/s | **590** t/s |