Spaces:
Runtime error
Runtime error
title: Audio Diffusion | |
emoji: 🎵 | |
colorFrom: pink | |
colorTo: blue | |
sdk: gradio | |
sdk_version: 3.1.4 | |
app_file: app.py | |
pinned: false | |
license: gpl-3.0 | |
# audio-diffusion | |
### Apply [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) using the new Hugging Face [diffusers](https://github.com/huggingface/diffusers) package to synthesize music instead of images. | |
--- | |
![mel spectrogram](mel.png) | |
Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice versa. The higher the resolution, the less audio information will be lost. You can see how this works in the `test-mel.ipynb` notebook. | |
A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio. See the `test-model.ipynb` notebook for an example. | |
You can play around with the model I trained on about 500 songs from my Spotify "liked" playlist on [Google Colab](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test-model.ipynb) or [Hugging Face spaces](https://huggingface.co/spaces/teticio/audio-diffusion). Check out some samples I generated [here](https://soundcloud.com/teticio2/sets/audio-diffusion). | |
## Generate Mel spectrogram dataset from directory of audio files | |
#### Training can be run with Mel spectrograms of resolution 64x64 on a single commercial grade GPU (e.g. RTX 2080 Ti). The `hop_length` should be set to 1024 for better results. | |
```bash | |
python src/audio_to_images.py \ | |
--resolution 64 \ | |
--hop_length 1024\ | |
--input_dir path-to-audio-files \ | |
--output_dir data-test | |
``` | |
#### Generate dataset of 256x256 Mel spectrograms and push to hub (you will need to be authenticated with `huggingface-cli login`). | |
```bash | |
python src/audio_to_images.py \ | |
--resolution 256 \ | |
--input_dir path-to-audio-files \ | |
--output_dir data-256 \ | |
--push_to_hub teticio\audio-diffusion-256 | |
``` | |
## Train model | |
#### Run training on local machine. | |
```bash | |
accelerate launch --config_file accelerate_local.yaml \ | |
src/train_unconditional.py \ | |
--dataset_name data-64 \ | |
--resolution 64 \ | |
--hop_length 1024 \ | |
--output_dir ddpm-ema-audio-64 \ | |
--train_batch_size 16 \ | |
--num_epochs 100 \ | |
--gradient_accumulation_steps 1 \ | |
--learning_rate 1e-4 \ | |
--lr_warmup_steps 500 \ | |
--mixed_precision no | |
``` | |
#### Run training on local machine with `batch_size` of 2 and `gradient_accumulation_steps` 8 to compensate, so that 256x256 resolution model fits on commercial grade GPU and push to hub. | |
```bash | |
accelerate launch --config_file accelerate_local.yaml \ | |
src/train_unconditional.py \ | |
--dataset_name teticio/audio-diffusion-256 \ | |
--resolution 256 \ | |
--output_dir ddpm-ema-audio-256 \ | |
--num_epochs 100 \ | |
--train_batch_size 2 \ | |
--eval_batch_size 2 \ | |
--gradient_accumulation_steps 8 \ | |
--learning_rate 1e-4 \ | |
--lr_warmup_steps 500 \ | |
--mixed_precision no \ | |
--push_to_hub True \ | |
--hub_model_id teticio/audio-diffusion-256 \ | |
--hub_token $(cat $HOME/.huggingface/token) | |
``` | |
#### Run training on SageMaker. | |
```bash | |
accelerate launch --config_file accelerate_sagemaker.yaml \ | |
src/train_unconditional.py \ | |
--dataset_name teticio/audio-diffusion-256 \ | |
--resolution 256 \ | |
--output_dir ddpm-ema-audio-256 \ | |
--train_batch_size 16 \ | |
--num_epochs 100 \ | |
--gradient_accumulation_steps 1 \ | |
--learning_rate 1e-4 \ | |
--lr_warmup_steps 500 \ | |
--mixed_precision no | |
``` | |