Spaces:
Running
Running
# training llama tokenizer | |
How does Meta train their sentencepiece tokenizer? You can print the config as follows: | |
```python | |
import sentencepiece.sentencepiece_model_pb2 | |
mp = sentencepiece.sentencepiece_model_pb2.ModelProto() | |
mp.ParseFromString(open("tokenizer.model", "rb").read()) | |
print(mp.trainer_spec) | |
print(mp.normalizer_spec) | |
``` | |
this gives: | |
``` | |
trainer_spec { | |
input: "/large_experiments/theorem/datasets/MERGED/all.test1.merged" | |
model_prefix: "spm_model_32k_200M_charcov099995_allowWSO__v2" | |
model_type: BPE | |
vocab_size: 32000 | |
self_test_sample_size: 0 | |
input_format: "text" | |
character_coverage: 0.9999499917030334 | |
input_sentence_size: 200000000 | |
seed_sentencepiece_size: 1000000 | |
shrinking_factor: 0.75 | |
num_threads: 80 | |
num_sub_iterations: 2 | |
max_sentence_length: 4192 | |
shuffle_input_sentence: true | |
max_sentencepiece_length: 16 | |
split_by_unicode_script: true | |
split_by_whitespace: true | |
split_by_number: true | |
treat_whitespace_as_suffix: false | |
split_digits: true | |
allow_whitespace_only_pieces: true | |
vocabulary_output_piece_score: true | |
hard_vocab_limit: true | |
use_all_vocab: false | |
byte_fallback: true | |
required_chars: "" | |
unk_id: 0 | |
bos_id: 1 | |
eos_id: 2 | |
pad_id: -1 | |
unk_surface: " \342\201\207 " | |
unk_piece: "<unk>" | |
bos_piece: "<s>" | |
eos_piece: "</s>" | |
pad_piece: "<pad>" | |
train_extremely_large_corpus: false | |
enable_differential_privacy: false | |
differential_privacy_noise_level: 0.0 | |
differential_privacy_clipping_threshold: 0 | |
} | |
normalizer_spec { | |
name: "identity" | |
precompiled_charsmap: "" | |
add_dummy_prefix: true | |
remove_extra_whitespaces: false | |
normalization_rule_tsv: "" | |
} | |
``` | |
We can use the sentencepiece spm_train to train the same models, but optionally smaller. Here are their [options docs](https://github.com/google/sentencepiece/blob/master/doc/options.md) we can refer to. It's not much but it helps. | |
We'll depart on one setting, I recommend changing `character_coverage` -> 1.0. We also want to make sure to note the following important settings that come up in the paper and are not necessarily the default sentencepiece settings: | |
``` | |
--split-digits = true | |
--allow_whitespace_only_pieces = true | |
--byte_fallback = true | |
--normalization_rule_name = identity | |
``` | |
With this in mind we can train a sentencepiece vocab in what I believe is probably the same to how Meta trained theirs as: | |
``` | |
spm_train --input="$input" \ | |
--model_prefix="$model_prefix" \ | |
--model_type=bpe \ | |
--vocab_size="$vocab_size" \ | |
--self_test_sample_size=0 \ | |
--input_format="text" \ | |
--character_coverage=1.0 \ | |
--num_threads="$(nproc)" \ | |
--split_digits=true \ | |
--allow_whitespace_only_pieces=true \ | |
--byte_fallback=true \ | |
--unk_surface=" \342\201\207 " \ | |
--normalization_rule_name=identity \ | |
``` | |
Where $input is the input file, $model_prefix is the output path prefix, vocab_size is the desired vocab, and we're by default taking over the CPU resources of the machine. | |
Lastly note that sentencepiece is weird and expects "sentences" delimited by newlines as the input. You can't just put in a massive block of text. And they have a hyperparameter that constols the maximum size of a "sentence". Fwiw I really dislike this design choice around a weird concept of a "sentence". It should just be block of text with no assumptions. But here we are. | |
Look into the file `tinystories.py` where we train the vocab in the same way, but using Python bindings instead. | |