Spaces:
Sleeping
Sleeping
import os | |
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs") | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
import logging | |
import uuid | |
import GPUtil | |
import gradio as gr | |
import psutil | |
import spaces | |
import torch | |
from videosys import CogVideoXConfig, CogVideoXPABConfig, VideoSysEngine | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
dtype = torch.float16 | |
def load_model(enable_video_sys=False, pab_threshold=[100, 850], pab_range=2): | |
pab_config = CogVideoXPABConfig(spatial_threshold=pab_threshold, spatial_range=pab_range) | |
config = CogVideoXConfig(world_size=1, enable_pab=enable_video_sys, pab_config=pab_config) | |
engine = VideoSysEngine(config) | |
return engine | |
def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0): | |
video = engine.generate(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0] | |
unique_filename = f"{uuid.uuid4().hex}.mp4" | |
output_path = os.path.join("./.tmp_outputs", unique_filename) | |
engine.save_video(video, output_path) | |
return output_path | |
def get_server_status(): | |
cpu_percent = psutil.cpu_percent() | |
memory = psutil.virtual_memory() | |
disk = psutil.disk_usage("/") | |
gpus = GPUtil.getGPUs() | |
gpu_info = [] | |
for gpu in gpus: | |
gpu_info.append( | |
{ | |
"id": gpu.id, | |
"name": gpu.name, | |
"load": f"{gpu.load*100:.1f}%", | |
"memory_used": f"{gpu.memoryUsed}MB", | |
"memory_total": f"{gpu.memoryTotal}MB", | |
} | |
) | |
return {"cpu": f"{cpu_percent}%", "memory": f"{memory.percent}%", "disk": f"{disk.percent}%", "gpu": gpu_info} | |
def generate_vanilla(prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)): | |
engine = load_model() | |
video_path = generate(engine, prompt, num_inference_steps, guidance_scale) | |
return video_path | |
def generate_vs( | |
prompt, | |
num_inference_steps, | |
guidance_scale, | |
threshold_start, | |
threshold_end, | |
gap, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
threshold = [int(threshold_end), int(threshold_start)] | |
gap = int(gap) | |
engine = load_model(enable_video_sys=True, pab_threshold=threshold, pab_range=gap) | |
video_path = generate(engine, prompt, num_inference_steps, guidance_scale) | |
return video_path | |
def get_server_status(): | |
cpu_percent = psutil.cpu_percent() | |
memory = psutil.virtual_memory() | |
disk = psutil.disk_usage("/") | |
try: | |
gpus = GPUtil.getGPUs() | |
if gpus: | |
gpu = gpus[0] | |
gpu_memory = f"{gpu.memoryUsed}/{gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)" | |
else: | |
gpu_memory = "No GPU found" | |
except: | |
gpu_memory = "GPU information unavailable" | |
return { | |
"cpu": f"{cpu_percent}%", | |
"memory": f"{memory.percent}%", | |
"disk": f"{disk.percent}%", | |
"gpu_memory": gpu_memory, | |
} | |
def update_server_status(): | |
status = get_server_status() | |
return (status["cpu"], status["memory"], status["disk"], status["gpu_memory"]) | |
css = """ | |
body { | |
font-family: Arial, sans-serif; | |
line-height: 1.6; | |
color: #333; | |
margin: 0 auto; | |
padding: 20px; | |
} | |
.container { | |
display: flex; | |
flex-direction: column; | |
gap: 10px; | |
} | |
.row { | |
display: flex; | |
flex-wrap: wrap; | |
gap: 10px; | |
} | |
.column { | |
flex: 1; | |
min-width: 0; | |
} | |
.video-output { | |
width: 100%; | |
max-width: 720px; | |
height: auto; | |
margin: 0 auto; | |
} | |
.server-status { | |
margin-top: 5px; | |
padding: 5px; | |
font-size: 0.8em; | |
} | |
.server-status h4 { | |
margin: 0 0 3px 0; | |
font-size: 0.9em; | |
} | |
.server-status .row { | |
margin-bottom: 2px; | |
} | |
.server-status .textbox { | |
min-height: unset !important; | |
} | |
.server-status .textbox input { | |
padding: 1px 5px !important; | |
height: 20px !important; | |
font-size: 0.9em !important; | |
} | |
.server-status .textbox label { | |
margin-bottom: 0 !important; | |
font-size: 0.9em !important; | |
line-height: 1.2 !important; | |
} | |
.server-status .textbox { | |
gap: 0 !important; | |
} | |
.server-status .textbox input { | |
margin-top: -2px !important; | |
} | |
@media (max-width: 768px) { | |
.row { | |
flex-direction: column; | |
} | |
.column { | |
width: 100%; | |
} | |
} | |
.video-output { | |
width: 100%; | |
height: auto; | |
} | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;"> | |
VideoSys for CogVideoX🤗 | |
</div> | |
<div style="text-align: center; font-size: 15px;"> | |
🌐 Github: <a href="https://github.com/NUS-HPC-AI-Lab/VideoSys">https://github.com/NUS-HPC-AI-Lab/VideoSys</a><br> | |
⚠️ This demo is for academic research and experiential use only. | |
Users should strictly adhere to local laws and ethics.<br> | |
💡 This demo only demonstrates single-device inference. To experience the full power of VideoSys, please deploy it with multiple devices.<br><br> | |
</div> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", value="Sunset over the sea.", lines=4) | |
with gr.Column(): | |
gr.Markdown("**Generation Parameters**<br>") | |
with gr.Row(): | |
num_inference_steps = gr.Number(label="Inference Steps", value=50) | |
guidance_scale = gr.Number(label="Guidance Scale", value=6.0) | |
with gr.Row(): | |
pab_range = gr.Number( | |
label="PAB Broadcast Range", value=2, precision=0, info="Broadcast timesteps range." | |
) | |
pab_threshold_start = gr.Number(label="PAB Start Timestep", value=850, info="Start from step 1000.") | |
pab_threshold_end = gr.Number(label="PAB End Timestep", value=100, info="End at step 0.") | |
with gr.Row(): | |
generate_button_vs = gr.Button("⚡️ Generate Video with VideoSys (Faster)") | |
generate_button = gr.Button("🎬 Generate Video (Original)") | |
with gr.Column(elem_classes="server-status"): | |
gr.Markdown("#### Server Status") | |
with gr.Row(): | |
cpu_status = gr.Textbox(label="CPU", scale=1) | |
memory_status = gr.Textbox(label="Memory", scale=1) | |
with gr.Row(): | |
disk_status = gr.Textbox(label="Disk", scale=1) | |
gpu_status = gr.Textbox(label="GPU Memory", scale=1) | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
with gr.Column(): | |
with gr.Row(): | |
video_output_vs = gr.Video(label="CogVideoX with VideoSys", width=720, height=480) | |
with gr.Row(): | |
video_output = gr.Video(label="CogVideoX", width=720, height=480) | |
generate_button.click( | |
generate_vanilla, | |
inputs=[prompt, num_inference_steps, guidance_scale], | |
outputs=[video_output], | |
concurrency_id="gen", | |
concurrency_limit=1, | |
) | |
generate_button_vs.click( | |
generate_vs, | |
inputs=[prompt, num_inference_steps, guidance_scale, pab_threshold_start, pab_threshold_end, pab_range], | |
outputs=[video_output_vs], | |
concurrency_id="gen", | |
concurrency_limit=1, | |
) | |
refresh_button.click(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status]) | |
demo.load(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status], every=1) | |
if __name__ == "__main__": | |
demo.queue(max_size=10, default_concurrency_limit=1) | |
demo.launch() | |