Spaces:
Sleeping
Sleeping
File size: 7,882 Bytes
0c14fd5 bac0d32 61bd18b 6ca2579 61bd18b 07c6a04 ab7be96 374c3a9 d6e8791 7d0d1f0 ab7be96 8d23ca8 ab7be96 8d23ca8 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 bac0d32 efc27db ab7be96 61bd18b ab7be96 7d0d1f0 ab7be96 7d0d1f0 ab7be96 efc27db ab7be96 efc27db bac0d32 ab7be96 bac0d32 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 efc27db b1ae694 efc27db b1ae694 b652dd0 0a41bc2 b652dd0 b1ae694 0a41bc2 b1ae694 b652dd0 0a41bc2 b1ae694 0a41bc2 b652dd0 0a41bc2 efc27db 0a41bc2 07c6a04 b652dd0 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 9b08739 ab7be96 9b08739 ab7be96 9b08739 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 9fc5ec2 b71d548 ab7be96 b71d548 05576af ab7be96 9fc5ec2 05576af ab7be96 9fc5ec2 ab7be96 07c6a04 ab7be96 52a6c7f debb23f a6d5f16 ab7be96 14a04f5 07c6a04 eef733b debb23f a6d5f16 ab7be96 14a04f5 debb23f 8d23ca8 61bd18b 0af4f53 efc27db 07c6a04 bac0d32 ab7be96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import logging
import uuid
import GPUtil
import gradio as gr
import psutil
import spaces
import torch
from videosys import CogVideoXConfig, CogVideoXPABConfig, VideoSysEngine
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
dtype = torch.float16
def load_model(enable_video_sys=False, pab_threshold=[100, 850], pab_range=2):
pab_config = CogVideoXPABConfig(spatial_threshold=pab_threshold, spatial_range=pab_range)
config = CogVideoXConfig(world_size=1, enable_pab=enable_video_sys, pab_config=pab_config)
engine = VideoSysEngine(config)
return engine
def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0):
video = engine.generate(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0]
unique_filename = f"{uuid.uuid4().hex}.mp4"
output_path = os.path.join("./.tmp_outputs", unique_filename)
engine.save_video(video, output_path)
return output_path
def get_server_status():
cpu_percent = psutil.cpu_percent()
memory = psutil.virtual_memory()
disk = psutil.disk_usage("/")
gpus = GPUtil.getGPUs()
gpu_info = []
for gpu in gpus:
gpu_info.append(
{
"id": gpu.id,
"name": gpu.name,
"load": f"{gpu.load*100:.1f}%",
"memory_used": f"{gpu.memoryUsed}MB",
"memory_total": f"{gpu.memoryTotal}MB",
}
)
return {"cpu": f"{cpu_percent}%", "memory": f"{memory.percent}%", "disk": f"{disk.percent}%", "gpu": gpu_info}
@spaces.GPU
def generate_vanilla(prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)):
engine = load_model()
video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
return video_path
@spaces.GPU
def generate_vs(
prompt,
num_inference_steps,
guidance_scale,
threshold_start,
threshold_end,
gap,
progress=gr.Progress(track_tqdm=True),
):
threshold = [int(threshold_end), int(threshold_start)]
gap = int(gap)
engine = load_model(enable_video_sys=True, pab_threshold=threshold, pab_range=gap)
video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
return video_path
def get_server_status():
cpu_percent = psutil.cpu_percent()
memory = psutil.virtual_memory()
disk = psutil.disk_usage("/")
try:
gpus = GPUtil.getGPUs()
if gpus:
gpu = gpus[0]
gpu_memory = f"{gpu.memoryUsed}/{gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)"
else:
gpu_memory = "No GPU found"
except:
gpu_memory = "GPU information unavailable"
return {
"cpu": f"{cpu_percent}%",
"memory": f"{memory.percent}%",
"disk": f"{disk.percent}%",
"gpu_memory": gpu_memory,
}
def update_server_status():
status = get_server_status()
return (status["cpu"], status["memory"], status["disk"], status["gpu_memory"])
css = """
body {
font-family: Arial, sans-serif;
line-height: 1.6;
color: #333;
margin: 0 auto;
padding: 20px;
}
.container {
display: flex;
flex-direction: column;
gap: 10px;
}
.row {
display: flex;
flex-wrap: wrap;
gap: 10px;
}
.column {
flex: 1;
min-width: 0;
}
.video-output {
width: 100%;
max-width: 720px;
height: auto;
margin: 0 auto;
}
.server-status {
margin-top: 5px;
padding: 5px;
font-size: 0.8em;
}
.server-status h4 {
margin: 0 0 3px 0;
font-size: 0.9em;
}
.server-status .row {
margin-bottom: 2px;
}
.server-status .textbox {
min-height: unset !important;
}
.server-status .textbox input {
padding: 1px 5px !important;
height: 20px !important;
font-size: 0.9em !important;
}
.server-status .textbox label {
margin-bottom: 0 !important;
font-size: 0.9em !important;
line-height: 1.2 !important;
}
.server-status .textbox {
gap: 0 !important;
}
.server-status .textbox input {
margin-top: -2px !important;
}
@media (max-width: 768px) {
.row {
flex-direction: column;
}
.column {
width: 100%;
}
}
.video-output {
width: 100%;
height: auto;
}
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
VideoSys for CogVideoX🤗
</div>
<div style="text-align: center; font-size: 15px;">
🌐 Github: <a href="https://github.com/NUS-HPC-AI-Lab/VideoSys">https://github.com/NUS-HPC-AI-Lab/VideoSys</a><br>
⚠️ This demo is for academic research and experiential use only.
Users should strictly adhere to local laws and ethics.<br>
💡 This demo only demonstrates single-device inference. To experience the full power of VideoSys, please deploy it with multiple devices.<br><br>
</div>
</div>
"""
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", value="Sunset over the sea.", lines=4)
with gr.Column():
gr.Markdown("**Generation Parameters**<br>")
with gr.Row():
num_inference_steps = gr.Number(label="Inference Steps", value=50)
guidance_scale = gr.Number(label="Guidance Scale", value=6.0)
with gr.Row():
pab_range = gr.Number(
label="PAB Broadcast Range", value=2, precision=0, info="Broadcast timesteps range."
)
pab_threshold_start = gr.Number(label="PAB Start Timestep", value=850, info="Start from step 1000.")
pab_threshold_end = gr.Number(label="PAB End Timestep", value=100, info="End at step 0.")
with gr.Row():
generate_button_vs = gr.Button("⚡️ Generate Video with VideoSys (Faster)")
generate_button = gr.Button("🎬 Generate Video (Original)")
with gr.Column(elem_classes="server-status"):
gr.Markdown("#### Server Status")
with gr.Row():
cpu_status = gr.Textbox(label="CPU", scale=1)
memory_status = gr.Textbox(label="Memory", scale=1)
with gr.Row():
disk_status = gr.Textbox(label="Disk", scale=1)
gpu_status = gr.Textbox(label="GPU Memory", scale=1)
with gr.Row():
refresh_button = gr.Button("Refresh")
with gr.Column():
with gr.Row():
video_output_vs = gr.Video(label="CogVideoX with VideoSys", width=720, height=480)
with gr.Row():
video_output = gr.Video(label="CogVideoX", width=720, height=480)
generate_button.click(
generate_vanilla,
inputs=[prompt, num_inference_steps, guidance_scale],
outputs=[video_output],
concurrency_id="gen",
concurrency_limit=1,
)
generate_button_vs.click(
generate_vs,
inputs=[prompt, num_inference_steps, guidance_scale, pab_threshold_start, pab_threshold_end, pab_range],
outputs=[video_output_vs],
concurrency_id="gen",
concurrency_limit=1,
)
refresh_button.click(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status])
demo.load(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status], every=1)
if __name__ == "__main__":
demo.queue(max_size=10, default_concurrency_limit=1)
demo.launch()
|