zxl
first commit
07c6a04
raw
history blame
1.48 kB
# Adapted from Open-Sora-Plan
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
# --------------------------------------------------------
import torch
from einops import rearrange
def video_to_image(func):
def wrapper(self, x, *args, **kwargs):
if x.dim() == 5:
t = x.shape[2]
x = rearrange(x, "b c t h w -> (b t) c h w")
x = func(self, x, *args, **kwargs)
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
return x
return wrapper
def nonlinearity(x):
return x * torch.sigmoid(x)
def cast_tuple(t, length=1):
return t if isinstance(t, tuple) else ((t,) * length)
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
n_dims = len(x.shape)
if src_dim < 0:
src_dim = n_dims + src_dim
if dest_dim < 0:
dest_dim = n_dims + dest_dim
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims
dims = list(range(n_dims))
del dims[src_dim]
permutation = []
ctr = 0
for i in range(n_dims):
if i == dest_dim:
permutation.append(src_dim)
else:
permutation.append(dims[ctr])
ctr += 1
x = x.permute(permutation)
if make_contiguous:
x = x.contiguous()
return x