File size: 1,480 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Adapted from Open-Sora-Plan

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
# --------------------------------------------------------

import torch
from einops import rearrange


def video_to_image(func):
    def wrapper(self, x, *args, **kwargs):
        if x.dim() == 5:
            t = x.shape[2]
            x = rearrange(x, "b c t h w -> (b t) c h w")
            x = func(self, x, *args, **kwargs)
            x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
        return x

    return wrapper


def nonlinearity(x):
    return x * torch.sigmoid(x)


def cast_tuple(t, length=1):
    return t if isinstance(t, tuple) else ((t,) * length)


def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
    n_dims = len(x.shape)
    if src_dim < 0:
        src_dim = n_dims + src_dim
    if dest_dim < 0:
        dest_dim = n_dims + dest_dim
    assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims
    dims = list(range(n_dims))
    del dims[src_dim]
    permutation = []
    ctr = 0
    for i in range(n_dims):
        if i == dest_dim:
            permutation.append(src_dim)
        else:
            permutation.append(dims[ctr])
            ctr += 1
    x = x.permute(permutation)
    if make_contiguous:
        x = x.contiguous()
    return x