zxl
first commit
07c6a04
raw
history blame
13 kB
# Adapted from CogVideo
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# CogVideo: https://github.com/THUDM/CogVideo
# diffusers: https://github.com/huggingface/diffusers
# --------------------------------------------------------
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid, get_2d_sincos_pos_embed_from_grid
class CogVideoXDownsample3D(nn.Module):
# Todo: Wait for paper relase.
r"""
A 3D Downsampling layer using in [CogVideoX]() by Tsinghua University & ZhipuAI
Args:
in_channels (`int`):
Number of channels in the input image.
out_channels (`int`):
Number of channels produced by the convolution.
kernel_size (`int`, defaults to `3`):
Size of the convolving kernel.
stride (`int`, defaults to `2`):
Stride of the convolution.
padding (`int`, defaults to `0`):
Padding added to all four sides of the input.
compress_time (`bool`, defaults to `False`):
Whether or not to compress the time dimension.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 2,
padding: int = 0,
compress_time: bool = False,
):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.compress_time = compress_time
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.compress_time:
batch_size, channels, frames, height, width = x.shape
# (batch_size, channels, frames, height, width) -> (batch_size, height, width, channels, frames) -> (batch_size * height * width, channels, frames)
x = x.permute(0, 3, 4, 1, 2).reshape(batch_size * height * width, channels, frames)
if x.shape[-1] % 2 == 1:
x_first, x_rest = x[..., 0], x[..., 1:]
if x_rest.shape[-1] > 0:
# (batch_size * height * width, channels, frames - 1) -> (batch_size * height * width, channels, (frames - 1) // 2)
x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2)
x = torch.cat([x_first[..., None], x_rest], dim=-1)
# (batch_size * height * width, channels, (frames // 2) + 1) -> (batch_size, height, width, channels, (frames // 2) + 1) -> (batch_size, channels, (frames // 2) + 1, height, width)
x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2)
else:
# (batch_size * height * width, channels, frames) -> (batch_size * height * width, channels, frames // 2)
x = F.avg_pool1d(x, kernel_size=2, stride=2)
# (batch_size * height * width, channels, frames // 2) -> (batch_size, height, width, channels, frames // 2) -> (batch_size, channels, frames // 2, height, width)
x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2)
# Pad the tensor
pad = (0, 1, 0, 1)
x = F.pad(x, pad, mode="constant", value=0)
batch_size, channels, frames, height, width = x.shape
# (batch_size, channels, frames, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size * frames, channels, height, width)
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channels, height, width)
x = self.conv(x)
# (batch_size * frames, channels, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size, channels, frames, height, width)
x = x.reshape(batch_size, frames, x.shape[1], x.shape[2], x.shape[3]).permute(0, 2, 1, 3, 4)
return x
class CogVideoXUpsample3D(nn.Module):
r"""
A 3D Upsample layer using in CogVideoX by Tsinghua University & ZhipuAI # Todo: Wait for paper relase.
Args:
in_channels (`int`):
Number of channels in the input image.
out_channels (`int`):
Number of channels produced by the convolution.
kernel_size (`int`, defaults to `3`):
Size of the convolving kernel.
stride (`int`, defaults to `1`):
Stride of the convolution.
padding (`int`, defaults to `1`):
Padding added to all four sides of the input.
compress_time (`bool`, defaults to `False`):
Whether or not to compress the time dimension.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
padding: int = 1,
compress_time: bool = False,
) -> None:
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.compress_time = compress_time
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
if self.compress_time:
if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1:
# split first frame
x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:]
x_first = F.interpolate(x_first, scale_factor=2.0)
x_rest = F.interpolate(x_rest, scale_factor=2.0)
x_first = x_first[:, :, None, :, :]
inputs = torch.cat([x_first, x_rest], dim=2)
elif inputs.shape[2] > 1:
inputs = F.interpolate(inputs, scale_factor=2.0)
else:
inputs = inputs.squeeze(2)
inputs = F.interpolate(inputs, scale_factor=2.0)
inputs = inputs[:, :, None, :, :]
else:
# only interpolate 2D
b, c, t, h, w = inputs.shape
inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
inputs = F.interpolate(inputs, scale_factor=2.0)
inputs = inputs.reshape(b, t, c, *inputs.shape[2:]).permute(0, 2, 1, 3, 4)
b, c, t, h, w = inputs.shape
inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
inputs = self.conv(inputs)
inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3, 4)
return inputs
def get_3d_sincos_pos_embed(
embed_dim: int,
spatial_size: Union[int, Tuple[int, int]],
temporal_size: int,
spatial_interpolation_scale: float = 1.0,
temporal_interpolation_scale: float = 1.0,
) -> np.ndarray:
r"""
Args:
embed_dim (`int`):
spatial_size (`int` or `Tuple[int, int]`):
temporal_size (`int`):
spatial_interpolation_scale (`float`, defaults to 1.0):
temporal_interpolation_scale (`float`, defaults to 1.0):
"""
if embed_dim % 4 != 0:
raise ValueError("`embed_dim` must be divisible by 4")
if isinstance(spatial_size, int):
spatial_size = (spatial_size, spatial_size)
embed_dim_spatial = 3 * embed_dim // 4
embed_dim_temporal = embed_dim // 4
# 1. Spatial
grid_h = np.arange(spatial_size[1], dtype=np.float32) / spatial_interpolation_scale
grid_w = np.arange(spatial_size[0], dtype=np.float32) / spatial_interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)
# 2. Temporal
grid_t = np.arange(temporal_size, dtype=np.float32) / temporal_interpolation_scale
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t)
# 3. Concat
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
pos_embed_spatial = np.repeat(pos_embed_spatial, temporal_size, axis=0) # [T, H*W, D // 4 * 3]
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
pos_embed_temporal = np.repeat(pos_embed_temporal, spatial_size[0] * spatial_size[1], axis=1) # [T, H*W, D // 4]
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) # [T, H*W, D]
return pos_embed
class CogVideoXPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
embed_dim: int = 1920,
text_embed_dim: int = 4096,
bias: bool = True,
) -> None:
super().__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
r"""
Args:
text_embeds (`torch.Tensor`):
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
image_embeds (`torch.Tensor`):
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
"""
text_embeds = self.text_proj(text_embeds)
batch, num_frames, channels, height, width = image_embeds.shape
image_embeds = image_embeds.reshape(-1, channels, height, width)
image_embeds = self.proj(image_embeds)
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:])
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
embeds = torch.cat(
[text_embeds, image_embeds], dim=1
).contiguous() # [batch, seq_length + num_frames x height x width, channels]
return embeds
class CogVideoXLayerNormZero(nn.Module):
def __init__(
self,
conditioning_dim: int,
embedding_dim: int,
elementwise_affine: bool = True,
eps: float = 1e-5,
bias: bool = True,
) -> None:
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias)
self.norm = nn.LayerNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
def forward(
self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
shift, scale, gate, enc_shift, enc_scale, enc_gate = self.linear(self.silu(temb)).chunk(6, dim=1)
hidden_states = self.norm(hidden_states) * (1 + scale)[:, None, :] + shift[:, None, :]
encoder_hidden_states = self.norm(encoder_hidden_states) * (1 + enc_scale)[:, None, :] + enc_shift[:, None, :]
return hidden_states, encoder_hidden_states, gate[:, None, :], enc_gate[:, None, :]
class AdaLayerNorm(nn.Module):
r"""
Norm layer modified to incorporate timestep embeddings.
Parameters:
embedding_dim (`int`): The size of each embedding vector.
num_embeddings (`int`, *optional*): The size of the embeddings dictionary.
output_dim (`int`, *optional*):
norm_elementwise_affine (`bool`, defaults to `False):
norm_eps (`bool`, defaults to `False`):
chunk_dim (`int`, defaults to `0`):
"""
def __init__(
self,
embedding_dim: int,
num_embeddings: Optional[int] = None,
output_dim: Optional[int] = None,
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-5,
chunk_dim: int = 0,
):
super().__init__()
self.chunk_dim = chunk_dim
output_dim = output_dim or embedding_dim * 2
if num_embeddings is not None:
self.emb = nn.Embedding(num_embeddings, embedding_dim)
else:
self.emb = None
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, output_dim)
self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)
def forward(
self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None
) -> torch.Tensor:
if self.emb is not None:
temb = self.emb(timestep)
temb = self.linear(self.silu(temb))
if self.chunk_dim == 1:
# This is a bit weird why we have the order of "shift, scale" here and "scale, shift" in the
# other if-branch. This branch is specific to CogVideoX for now.
shift, scale = temb.chunk(2, dim=1)
shift = shift[:, None, :]
scale = scale[:, None, :]
else:
scale, shift = temb.chunk(2, dim=0)
x = self.norm(x) * (1 + scale) + shift
return x