# Adapted from CogVideo # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # CogVideo: https://github.com/THUDM/CogVideo # diffusers: https://github.com/huggingface/diffusers # -------------------------------------------------------- from typing import Optional, Tuple, Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid, get_2d_sincos_pos_embed_from_grid class CogVideoXDownsample3D(nn.Module): # Todo: Wait for paper relase. r""" A 3D Downsampling layer using in [CogVideoX]() by Tsinghua University & ZhipuAI Args: in_channels (`int`): Number of channels in the input image. out_channels (`int`): Number of channels produced by the convolution. kernel_size (`int`, defaults to `3`): Size of the convolving kernel. stride (`int`, defaults to `2`): Stride of the convolution. padding (`int`, defaults to `0`): Padding added to all four sides of the input. compress_time (`bool`, defaults to `False`): Whether or not to compress the time dimension. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 2, padding: int = 0, compress_time: bool = False, ): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) self.compress_time = compress_time def forward(self, x: torch.Tensor) -> torch.Tensor: if self.compress_time: batch_size, channels, frames, height, width = x.shape # (batch_size, channels, frames, height, width) -> (batch_size, height, width, channels, frames) -> (batch_size * height * width, channels, frames) x = x.permute(0, 3, 4, 1, 2).reshape(batch_size * height * width, channels, frames) if x.shape[-1] % 2 == 1: x_first, x_rest = x[..., 0], x[..., 1:] if x_rest.shape[-1] > 0: # (batch_size * height * width, channels, frames - 1) -> (batch_size * height * width, channels, (frames - 1) // 2) x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2) x = torch.cat([x_first[..., None], x_rest], dim=-1) # (batch_size * height * width, channels, (frames // 2) + 1) -> (batch_size, height, width, channels, (frames // 2) + 1) -> (batch_size, channels, (frames // 2) + 1, height, width) x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) else: # (batch_size * height * width, channels, frames) -> (batch_size * height * width, channels, frames // 2) x = F.avg_pool1d(x, kernel_size=2, stride=2) # (batch_size * height * width, channels, frames // 2) -> (batch_size, height, width, channels, frames // 2) -> (batch_size, channels, frames // 2, height, width) x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) # Pad the tensor pad = (0, 1, 0, 1) x = F.pad(x, pad, mode="constant", value=0) batch_size, channels, frames, height, width = x.shape # (batch_size, channels, frames, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size * frames, channels, height, width) x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channels, height, width) x = self.conv(x) # (batch_size * frames, channels, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size, channels, frames, height, width) x = x.reshape(batch_size, frames, x.shape[1], x.shape[2], x.shape[3]).permute(0, 2, 1, 3, 4) return x class CogVideoXUpsample3D(nn.Module): r""" A 3D Upsample layer using in CogVideoX by Tsinghua University & ZhipuAI # Todo: Wait for paper relase. Args: in_channels (`int`): Number of channels in the input image. out_channels (`int`): Number of channels produced by the convolution. kernel_size (`int`, defaults to `3`): Size of the convolving kernel. stride (`int`, defaults to `1`): Stride of the convolution. padding (`int`, defaults to `1`): Padding added to all four sides of the input. compress_time (`bool`, defaults to `False`): Whether or not to compress the time dimension. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, padding: int = 1, compress_time: bool = False, ) -> None: super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) self.compress_time = compress_time def forward(self, inputs: torch.Tensor) -> torch.Tensor: if self.compress_time: if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1: # split first frame x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:] x_first = F.interpolate(x_first, scale_factor=2.0) x_rest = F.interpolate(x_rest, scale_factor=2.0) x_first = x_first[:, :, None, :, :] inputs = torch.cat([x_first, x_rest], dim=2) elif inputs.shape[2] > 1: inputs = F.interpolate(inputs, scale_factor=2.0) else: inputs = inputs.squeeze(2) inputs = F.interpolate(inputs, scale_factor=2.0) inputs = inputs[:, :, None, :, :] else: # only interpolate 2D b, c, t, h, w = inputs.shape inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) inputs = F.interpolate(inputs, scale_factor=2.0) inputs = inputs.reshape(b, t, c, *inputs.shape[2:]).permute(0, 2, 1, 3, 4) b, c, t, h, w = inputs.shape inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) inputs = self.conv(inputs) inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3, 4) return inputs def get_3d_sincos_pos_embed( embed_dim: int, spatial_size: Union[int, Tuple[int, int]], temporal_size: int, spatial_interpolation_scale: float = 1.0, temporal_interpolation_scale: float = 1.0, ) -> np.ndarray: r""" Args: embed_dim (`int`): spatial_size (`int` or `Tuple[int, int]`): temporal_size (`int`): spatial_interpolation_scale (`float`, defaults to 1.0): temporal_interpolation_scale (`float`, defaults to 1.0): """ if embed_dim % 4 != 0: raise ValueError("`embed_dim` must be divisible by 4") if isinstance(spatial_size, int): spatial_size = (spatial_size, spatial_size) embed_dim_spatial = 3 * embed_dim // 4 embed_dim_temporal = embed_dim // 4 # 1. Spatial grid_h = np.arange(spatial_size[1], dtype=np.float32) / spatial_interpolation_scale grid_w = np.arange(spatial_size[0], dtype=np.float32) / spatial_interpolation_scale grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]]) pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid) # 2. Temporal grid_t = np.arange(temporal_size, dtype=np.float32) / temporal_interpolation_scale pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t) # 3. Concat pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] pos_embed_spatial = np.repeat(pos_embed_spatial, temporal_size, axis=0) # [T, H*W, D // 4 * 3] pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] pos_embed_temporal = np.repeat(pos_embed_temporal, spatial_size[0] * spatial_size[1], axis=1) # [T, H*W, D // 4] pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) # [T, H*W, D] return pos_embed class CogVideoXPatchEmbed(nn.Module): def __init__( self, patch_size: int = 2, in_channels: int = 16, embed_dim: int = 1920, text_embed_dim: int = 4096, bias: bool = True, ) -> None: super().__init__() self.patch_size = patch_size self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) self.text_proj = nn.Linear(text_embed_dim, embed_dim) def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): r""" Args: text_embeds (`torch.Tensor`): Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). image_embeds (`torch.Tensor`): Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). """ text_embeds = self.text_proj(text_embeds) batch, num_frames, channels, height, width = image_embeds.shape image_embeds = image_embeds.reshape(-1, channels, height, width) image_embeds = self.proj(image_embeds) image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] embeds = torch.cat( [text_embeds, image_embeds], dim=1 ).contiguous() # [batch, seq_length + num_frames x height x width, channels] return embeds class CogVideoXLayerNormZero(nn.Module): def __init__( self, conditioning_dim: int, embedding_dim: int, elementwise_affine: bool = True, eps: float = 1e-5, bias: bool = True, ) -> None: super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias) self.norm = nn.LayerNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: shift, scale, gate, enc_shift, enc_scale, enc_gate = self.linear(self.silu(temb)).chunk(6, dim=1) hidden_states = self.norm(hidden_states) * (1 + scale)[:, None, :] + shift[:, None, :] encoder_hidden_states = self.norm(encoder_hidden_states) * (1 + enc_scale)[:, None, :] + enc_shift[:, None, :] return hidden_states, encoder_hidden_states, gate[:, None, :], enc_gate[:, None, :] class AdaLayerNorm(nn.Module): r""" Norm layer modified to incorporate timestep embeddings. Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`, *optional*): The size of the embeddings dictionary. output_dim (`int`, *optional*): norm_elementwise_affine (`bool`, defaults to `False): norm_eps (`bool`, defaults to `False`): chunk_dim (`int`, defaults to `0`): """ def __init__( self, embedding_dim: int, num_embeddings: Optional[int] = None, output_dim: Optional[int] = None, norm_elementwise_affine: bool = False, norm_eps: float = 1e-5, chunk_dim: int = 0, ): super().__init__() self.chunk_dim = chunk_dim output_dim = output_dim or embedding_dim * 2 if num_embeddings is not None: self.emb = nn.Embedding(num_embeddings, embedding_dim) else: self.emb = None self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, output_dim) self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine) def forward( self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None ) -> torch.Tensor: if self.emb is not None: temb = self.emb(timestep) temb = self.linear(self.silu(temb)) if self.chunk_dim == 1: # This is a bit weird why we have the order of "shift, scale" here and "scale, shift" in the # other if-branch. This branch is specific to CogVideoX for now. shift, scale = temb.chunk(2, dim=1) shift = shift[:, None, :] scale = scale[:, None, :] else: scale, shift = temb.chunk(2, dim=0) x = self.norm(x) * (1 + scale) + shift return x