Spaces:
Sleeping
Sleeping
# Adapted from CogVideo | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# CogVideo: https://github.com/THUDM/CogVideo | |
# diffusers: https://github.com/huggingface/diffusers | |
# -------------------------------------------------------- | |
from typing import Any, Dict, Optional, Union | |
import torch | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.attention import Attention, FeedForward | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils import is_torch_version, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from torch import nn | |
from .modules import AdaLayerNorm, CogVideoXLayerNormZero, CogVideoXPatchEmbed, get_3d_sincos_pos_embed | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class CogVideoXBlock(nn.Module): | |
r""" | |
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
qk_norm (`bool`, defaults to `True`): | |
Whether or not to use normalization after query and key projections in Attention. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, defaults to `1e-5`): | |
Epsilon value for normalization layers. | |
final_dropout (`bool` defaults to `False`): | |
Whether to apply a final dropout after the last feed-forward layer. | |
ff_inner_dim (`int`, *optional*, defaults to `None`): | |
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. | |
ff_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Feed-forward layer. | |
attention_out_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Attention output projection layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
time_embed_dim: int, | |
dropout: float = 0.0, | |
activation_fn: str = "gelu-approximate", | |
attention_bias: bool = False, | |
qk_norm: bool = True, | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
final_dropout: bool = True, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
): | |
super().__init__() | |
# 1. Self Attention | |
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.attn1 = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
) | |
# 2. Feed Forward | |
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
) -> torch.Tensor: | |
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( | |
hidden_states, encoder_hidden_states, temb | |
) | |
# attention | |
text_length = norm_encoder_hidden_states.size(1) | |
# CogVideoX uses concatenated text + video embeddings with self-attention instead of using | |
# them in cross-attention individually | |
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) | |
attn_output = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=None, | |
) | |
hidden_states = hidden_states + gate_msa * attn_output[:, text_length:] | |
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_output[:, :text_length] | |
# norm & modulate | |
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( | |
hidden_states, encoder_hidden_states, temb | |
) | |
# feed-forward | |
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = hidden_states + gate_ff * ff_output[:, text_length:] | |
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_length] | |
return hidden_states, encoder_hidden_states | |
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin): | |
""" | |
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input. | |
out_channels (`int`, *optional*): | |
The number of channels in the output. | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
attention_bias (`bool`, *optional*): | |
Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
This is fixed during training since it is used to learn a number of position embeddings. | |
patch_size (`int`, *optional*): | |
The size of the patches to use in the patch embedding layer. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): | |
The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
added to the hidden states. During inference, you can denoise for up to but not more steps than | |
`num_embeds_ada_norm`. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether or not to use elementwise affine in normalization layers. | |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers. | |
caption_channels (`int`, *optional*): | |
The number of channels in the caption embeddings. | |
video_length (`int`, *optional*): | |
The number of frames in the video-like data. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 30, | |
attention_head_dim: int = 64, | |
in_channels: Optional[int] = 16, | |
out_channels: Optional[int] = 16, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
time_embed_dim: int = 512, | |
text_embed_dim: int = 4096, | |
num_layers: int = 30, | |
dropout: float = 0.0, | |
attention_bias: bool = True, | |
sample_width: int = 90, | |
sample_height: int = 60, | |
sample_frames: int = 49, | |
patch_size: int = 2, | |
temporal_compression_ratio: int = 4, | |
max_text_seq_length: int = 226, | |
activation_fn: str = "gelu-approximate", | |
timestep_activation_fn: str = "silu", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
spatial_interpolation_scale: float = 1.875, | |
temporal_interpolation_scale: float = 1.0, | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
post_patch_height = sample_height // patch_size | |
post_patch_width = sample_width // patch_size | |
post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1 | |
self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames | |
# 1. Patch embedding | |
self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True) | |
self.embedding_dropout = nn.Dropout(dropout) | |
# 2. 3D positional embeddings | |
spatial_pos_embedding = get_3d_sincos_pos_embed( | |
inner_dim, | |
(post_patch_width, post_patch_height), | |
post_time_compression_frames, | |
spatial_interpolation_scale, | |
temporal_interpolation_scale, | |
) | |
spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1) | |
pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False) | |
pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding) | |
self.register_buffer("pos_embedding", pos_embedding, persistent=False) | |
# 3. Time embeddings | |
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) | |
# 4. Define spatio-temporal transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
CogVideoXBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) | |
# 5. Output blocks | |
self.norm_out = AdaLayerNorm( | |
embedding_dim=time_embed_dim, | |
output_dim=2 * inner_dim, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
chunk_dim=1, | |
) | |
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
timestep: Union[int, float, torch.LongTensor], | |
timestep_cond: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
): | |
batch_size, num_frames, channels, height, width = hidden_states.shape | |
# 1. Time embedding | |
timesteps = timestep | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=hidden_states.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
# 2. Patch embedding | |
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) | |
# 3. Position embedding | |
seq_length = height * width * num_frames // (self.config.patch_size**2) | |
pos_embeds = self.pos_embedding[:, : self.config.max_text_seq_length + seq_length] | |
hidden_states = hidden_states + pos_embeds | |
hidden_states = self.embedding_dropout(hidden_states) | |
encoder_hidden_states = hidden_states[:, : self.config.max_text_seq_length] | |
hidden_states = hidden_states[:, self.config.max_text_seq_length :] | |
# 5. Transformer blocks | |
for i, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states, encoder_hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=emb, | |
) | |
hidden_states = self.norm_final(hidden_states) | |
# 6. Final block | |
hidden_states = self.norm_out(hidden_states, temb=emb) | |
hidden_states = self.proj_out(hidden_states) | |
# 7. Unpatchify | |
p = self.config.patch_size | |
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p) | |
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |