File size: 14,815 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Adapted from CogVideo

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# CogVideo: https://github.com/THUDM/CogVideo
# diffusers: https://github.com/huggingface/diffusers
# --------------------------------------------------------

from typing import Any, Dict, Optional, Union

import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import is_torch_version, logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
from torch import nn

from .modules import AdaLayerNorm, CogVideoXLayerNormZero, CogVideoXPatchEmbed, get_3d_sincos_pos_embed

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@maybe_allow_in_graph
class CogVideoXBlock(nn.Module):
    r"""
    Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
        qk_norm (`bool`, defaults to `True`):
            Whether or not to use normalization after query and key projections in Attention.
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_eps (`float`, defaults to `1e-5`):
            Epsilon value for normalization layers.
        final_dropout (`bool` defaults to `False`):
            Whether to apply a final dropout after the last feed-forward layer.
        ff_inner_dim (`int`, *optional*, defaults to `None`):
            Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
        ff_bias (`bool`, defaults to `True`):
            Whether or not to use bias in Feed-forward layer.
        attention_out_bias (`bool`, defaults to `True`):
            Whether or not to use bias in Attention output projection layer.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        time_embed_dim: int,
        dropout: float = 0.0,
        activation_fn: str = "gelu-approximate",
        attention_bias: bool = False,
        qk_norm: bool = True,
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        final_dropout: bool = True,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
    ):
        super().__init__()

        # 1. Self Attention
        self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)

        self.attn1 = Attention(
            query_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            qk_norm="layer_norm" if qk_norm else None,
            eps=1e-6,
            bias=attention_bias,
            out_bias=attention_out_bias,
        )

        # 2. Feed Forward
        self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)

        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
    ) -> torch.Tensor:
        norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
            hidden_states, encoder_hidden_states, temb
        )

        # attention
        text_length = norm_encoder_hidden_states.size(1)

        # CogVideoX uses concatenated text + video embeddings with self-attention instead of using
        # them in cross-attention individually
        norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
        attn_output = self.attn1(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=None,
        )

        hidden_states = hidden_states + gate_msa * attn_output[:, text_length:]
        encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_output[:, :text_length]

        # norm & modulate
        norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
            hidden_states, encoder_hidden_states, temb
        )

        # feed-forward
        norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
        ff_output = self.ff(norm_hidden_states)

        hidden_states = hidden_states + gate_ff * ff_output[:, text_length:]
        encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_length]
        return hidden_states, encoder_hidden_states


class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
    """
    A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input.
        out_channels (`int`, *optional*):
            The number of channels in the output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        attention_bias (`bool`, *optional*):
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        patch_size (`int`, *optional*):
            The size of the patches to use in the patch embedding layer.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states. During inference, you can denoise for up to but not more steps than
            `num_embeds_ada_norm`.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether or not to use elementwise affine in normalization layers.
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers.
        caption_channels (`int`, *optional*):
            The number of channels in the caption embeddings.
        video_length (`int`, *optional*):
            The number of frames in the video-like data.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 30,
        attention_head_dim: int = 64,
        in_channels: Optional[int] = 16,
        out_channels: Optional[int] = 16,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        time_embed_dim: int = 512,
        text_embed_dim: int = 4096,
        num_layers: int = 30,
        dropout: float = 0.0,
        attention_bias: bool = True,
        sample_width: int = 90,
        sample_height: int = 60,
        sample_frames: int = 49,
        patch_size: int = 2,
        temporal_compression_ratio: int = 4,
        max_text_seq_length: int = 226,
        activation_fn: str = "gelu-approximate",
        timestep_activation_fn: str = "silu",
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        spatial_interpolation_scale: float = 1.875,
        temporal_interpolation_scale: float = 1.0,
    ):
        super().__init__()
        inner_dim = num_attention_heads * attention_head_dim

        post_patch_height = sample_height // patch_size
        post_patch_width = sample_width // patch_size
        post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1
        self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames

        # 1. Patch embedding
        self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True)
        self.embedding_dropout = nn.Dropout(dropout)

        # 2. 3D positional embeddings
        spatial_pos_embedding = get_3d_sincos_pos_embed(
            inner_dim,
            (post_patch_width, post_patch_height),
            post_time_compression_frames,
            spatial_interpolation_scale,
            temporal_interpolation_scale,
        )
        spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1)
        pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False)
        pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding)
        self.register_buffer("pos_embedding", pos_embedding, persistent=False)

        # 3. Time embeddings
        self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
        self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)

        # 4. Define spatio-temporal transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                CogVideoXBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    time_embed_dim=time_embed_dim,
                    dropout=dropout,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                )
                for _ in range(num_layers)
            ]
        )
        self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)

        # 5. Output blocks
        self.norm_out = AdaLayerNorm(
            embedding_dim=time_embed_dim,
            output_dim=2 * inner_dim,
            norm_elementwise_affine=norm_elementwise_affine,
            norm_eps=norm_eps,
            chunk_dim=1,
        )
        self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        timestep: Union[int, float, torch.LongTensor],
        timestep_cond: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        batch_size, num_frames, channels, height, width = hidden_states.shape

        # 1. Time embedding
        timesteps = timestep
        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=hidden_states.dtype)
        emb = self.time_embedding(t_emb, timestep_cond)

        # 2. Patch embedding
        hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)

        # 3. Position embedding
        seq_length = height * width * num_frames // (self.config.patch_size**2)

        pos_embeds = self.pos_embedding[:, : self.config.max_text_seq_length + seq_length]
        hidden_states = hidden_states + pos_embeds
        hidden_states = self.embedding_dropout(hidden_states)

        encoder_hidden_states = hidden_states[:, : self.config.max_text_seq_length]
        hidden_states = hidden_states[:, self.config.max_text_seq_length :]

        # 5. Transformer blocks
        for i, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    emb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states, encoder_hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=emb,
                )

        hidden_states = self.norm_final(hidden_states)

        # 6. Final block
        hidden_states = self.norm_out(hidden_states, temb=emb)
        hidden_states = self.proj_out(hidden_states)

        # 7. Unpatchify
        p = self.config.patch_size
        output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p)
        output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)

        if not return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)