Spaces:
Running
Running
File size: 15,658 Bytes
7fd51b5 22a7ea9 649469f 22a7ea9 a4d0b80 22a7ea9 a4d0b80 22a7ea9 85f9d5b 22a7ea9 85f9d5b 22a7ea9 85f9d5b 22a7ea9 cdcc68e 22a7ea9 85f9d5b 7fd51b5 22a7ea9 092f67e 7fd51b5 22a7ea9 7fd51b5 fe038cc 22a7ea9 7fd51b5 fe038cc 22a7ea9 7fd51b5 fe038cc 22a7ea9 7fd51b5 fe038cc 649469f 22a7ea9 7fd51b5 fe038cc 22a7ea9 649469f 092f67e 649469f 092f67e 649469f 7fd51b5 22a7ea9 20c8e31 22a7ea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import gradio as gr
import sqlite3
import bcrypt
import pandas as pd
import numpy as np
import joblib
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import OneHotEncoder, LabelEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.neighbors import NearestNeighbors
import plotly.express as px
import time
import threading
import random
import requests
import os # Import the os module to access environment variables
# Hugging Face API configuration
HUGGINGFACE_API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-large"
HUGGINGFACE_API_KEY = os.environ["HUGGINGFACE_API_KEY"] # Access the API key from environment variables
def huggingface_chatbot(user_input):
try:
headers = {
"Authorization": f"Bearer {HUGGINGFACE_API_KEY}",
"Content-Type": "application/json"
}
data = {
"inputs": f"Answer the following question clearly and concisely:\n{user_input}",
"parameters": {
"max_length": 150,
"temperature": 0.3 # Less randomness
}
}
response = requests.post(HUGGINGFACE_API_URL, headers=headers, json=data)
response.raise_for_status()
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error: {str(e)}"
def huggingface_chatbot(user_input):
try:
headers = {
"Authorization": f"Bearer {HUGGINGFACE_API_KEY}",
"Content-Type": "application/json"
}
data = {
"inputs": f"Answer the following question clearly and concisely:\n{user_input}",
"parameters": {
"max_length": 150,
"temperature": 0.3 # Less randomness
}
}
response = requests.post(HUGGINGFACE_API_URL, headers=headers, json=data)
response.raise_for_status()
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error: {str(e)}"
# Hugging Face Chatbot Function
def huggingface_chatbot(user_input):
try:
headers = {
"Authorization": f"Bearer {HUGGINGFACE_API_KEY}",
"Content-Type": "application/json"
}
data = {
"inputs": user_input,
"parameters": {
"max_length": 100, # Adjust as needed
"temperature": 0.7 # Adjust as needed
}
}
response = requests.post(HUGGINGFACE_API_URL, headers=headers, json=data)
response.raise_for_status() # Raise an error for bad status codes
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error: {str(e)}"
# Database setup for user authentication
def init_db():
conn = sqlite3.connect("users.db")
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE,
password TEXT
)
""")
conn.commit()
conn.close()
init_db()
def register(username, password):
conn = sqlite3.connect("users.db")
cursor = conn.cursor()
hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())
try:
cursor.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, hashed_pw))
conn.commit()
return "✅ Registration Successful! You can now log in."
except sqlite3.IntegrityError:
return "⚠️ Username already exists. Try another."
finally:
conn.close()
def login(username, password):
conn = sqlite3.connect("users.db")
cursor = conn.cursor()
cursor.execute("SELECT password FROM users WHERE username = ?", (username,))
result = cursor.fetchone()
conn.close()
if result and bcrypt.checkpw(password.encode(), result[0]):
return "✅ Login Successful! Welcome to the marketplace."
else:
return "❌ Incorrect username or password. Try again."
# Load dataset for product lifecycle prediction
df_lifecycle = pd.read_csv("ecommerce_product_dataset.csv") # Update this path with the correct one
# Preprocessing for product lifecycle prediction
categorical_features_lifecycle = ['Category']
numeric_features_lifecycle = ['Price', 'Rating', 'NumReviews', 'StockQuantity', 'Discount']
preprocessor_lifecycle = ColumnTransformer([
('cat', OneHotEncoder(handle_unknown='ignore'), categorical_features_lifecycle),
('num', 'passthrough', numeric_features_lifecycle)
])
# Fit the preprocessor on training data
X_lifecycle = df_lifecycle[["Category", "ProductName", "Price", "Rating", "NumReviews", "StockQuantity", "Discount"]]
y_lifecycle = df_lifecycle["Sales"] # Target variable
X_transformed_lifecycle = preprocessor_lifecycle.fit_transform(X_lifecycle)
# Train the model
model_lifecycle = RandomForestRegressor(n_estimators=100, random_state=42)
model_lifecycle.fit(X_transformed_lifecycle, y_lifecycle)
# Save the fitted preprocessor & model
joblib.dump(preprocessor_lifecycle, "preprocessor_lifecycle.pkl")
joblib.dump(model_lifecycle, "product_lifecycle_model.pkl")
# Load trained model and fitted preprocessor
model_lifecycle = joblib.load("product_lifecycle_model.pkl")
preprocessor_lifecycle = joblib.load("preprocessor_lifecycle.pkl")
def preprocess_input_lifecycle(Category, ProductName, Price, Rating, NumReviews, StockQuantity, Discount):
input_df = pd.DataFrame([[Category, ProductName, Price, Rating, NumReviews, StockQuantity, Discount]],
columns=["Category", "ProductName", "Price", "Rating", "NumReviews", "StockQuantity", "Discount"])
input_processed = preprocessor_lifecycle.transform(input_df)
return input_processed
def predict_lifecycle(Category, ProductName, Price, Rating, NumReviews, StockQuantity, Discount):
try:
input_data = preprocess_input_lifecycle(Category, ProductName, Price, Rating, NumReviews, StockQuantity, Discount)
prediction = model_lifecycle.predict(input_data)[0]
return f"Predicted Product Lifecycle: {round(prediction, 2)} years"
except Exception as e:
return f"Error: {str(e)}"
# Load dataset for dynamic pricing
df_pricing = pd.read_csv("dynamic_pricing_data_5000.csv") # Update this path with the correct one
# Encode categorical variables for dynamic pricing
label_encoders = {}
for col in ["Product Name", "Category", "Demand", "Season"]:
le = LabelEncoder()
df_pricing[col] = le.fit_transform(df_pricing[col])
label_encoders[col] = le
# Scale numerical features for dynamic pricing
scaler = StandardScaler()
num_cols = ["Base Price", "Competitor Price", "Stock", "Reviews", "Rating", "Discount"]
df_pricing[num_cols] = scaler.fit_transform(df_pricing[num_cols])
# Save label encoders and scaler
joblib.dump(label_encoders, "label_encoders.pkl")
joblib.dump(scaler, "scaler.pkl")
# Train model for dynamic pricing
X_pricing = df_pricing.drop(columns=["Final Price"])
y_pricing = df_pricing["Final Price"]
model_pricing = RandomForestRegressor(n_estimators=100, random_state=42)
model_pricing.fit(X_pricing, y_pricing)
# Save the trained model
joblib.dump(model_pricing, "dynamic_pricing_model.pkl")
# Load trained model, scaler, and label encoders
model_pricing = joblib.load("dynamic_pricing_model.pkl")
scaler = joblib.load("scaler.pkl")
label_encoders = joblib.load("label_encoders.pkl")
def predict_price(product_name, category, base_price, competitor_price, demand, stock, reviews, rating, season, discount):
# Encode categorical features
category = label_encoders["Category"].transform([category])[0]
demand = label_encoders["Demand"].transform([demand])[0]
season = label_encoders["Season"].transform([season])[0]
product_name = label_encoders["Product Name"].transform([product_name])[0]
# Scale numerical features
features = np.array([base_price, competitor_price, stock, reviews, rating, discount]).reshape(1, -1)
features = scaler.transform(features)
# Combine features
final_features = np.concatenate((features.flatten(), [category, demand, season, product_name])).reshape(1, -1)
# Predict
predicted_price = model_pricing.predict(final_features)[0]
return f"Optimal Price: ₹{round(predicted_price, 2)}"
# Load dataset for product recommendation
df_recommendation = pd.read_csv("synthetic_product_data_5000.csv") # Update this path with the correct one
# Preprocessing for product recommendation
categorical_features_recommendation = ['product_condition', 'category']
numeric_features_recommendation = ['price']
preprocessor_recommendation = ColumnTransformer(
transformers=[
('cat', OneHotEncoder(), categorical_features_recommendation),
('num', 'passthrough', numeric_features_recommendation)
])
product_features = preprocessor_recommendation.fit_transform(df_recommendation[['product_condition', 'price', 'category']])
# Fit NearestNeighbors model
knn = NearestNeighbors(n_neighbors=5)
knn.fit(product_features)
def recommend_products(category):
filtered_df = df_recommendation[df_recommendation['category'] == category]
if filtered_df.empty:
return "No products found in this category."
random_product = random.choice(filtered_df.index)
product = product_features[random_product].reshape(1, -1)
_, indices = knn.kneighbors(product)
recommended = df_recommendation.iloc[indices[0]]
recommended = recommended[recommended['category'] == category]
return recommended[['product_id', 'product_condition', 'price', 'category']]
# Circular Economy Analytics Dashboard
def load_data():
return pd.read_csv("synthetic_marketplace_data_2000.csv")
def update_live_data():
df = load_data()
new_entry = {
"Category": np.random.choice(["Electronics", "Plastic", "Metal", "Wood", "Composite"]),
"LifecycleYears": round(np.random.uniform(1, 20), 2),
"Price": round(np.random.uniform(10, 500), 2),
"NumReviews": np.random.randint(0, 1000)
}
df = df.append(new_entry, ignore_index=True)
df.to_csv("synthetic_marketplace_data_2000.csv", index=False)
def generate_dashboard():
df = load_data()
lifecycle_fig = px.bar(df.groupby('Category')['LifecycleYears'].mean().reset_index(),
x='Category', y='LifecycleYears', title='Average Product Lifecycle by Category')
price_trend_fig = px.line(df.groupby('Category')['Price'].mean().reset_index(),
x='Category', y='Price', title='Average Price Trends by Category')
engagement_fig = px.bar(df.groupby('Category')['NumReviews'].sum().reset_index(),
x='Category', y='NumReviews', title='Total User Reviews per Category')
df['Sustainability Score'] = np.random.uniform(0, 100, len(df))
sustainability_fig = px.scatter(df, x='Price', y='Sustainability Score', color='Category',
title='Sustainability Score vs. Product Price')
return lifecycle_fig, price_trend_fig, engagement_fig, sustainability_fig
# Gradio Interfaces
with gr.Blocks() as app:
# Add a logo or banner image
gr.Markdown("""
<div style="text-align: center;">
<img src="https://via.placeholder.com/800x200.png?text=Circular+Economy+Marketplace" alt="Banner" style="width: 100%; max-width: 800px;">
</div>
""")
gr.Markdown("# 🔐 Circular Economy Marketplace")
# Login/Register Tab
with gr.Tab("Login/Register"):
with gr.Tab("Register"):
reg_username = gr.Textbox(label="Username")
reg_password = gr.Textbox(label="Password", type="password")
reg_btn = gr.Button("Register")
reg_output = gr.Textbox()
reg_btn.click(register, inputs=[reg_username, reg_password], outputs=reg_output)
with gr.Tab("Login"):
log_username = gr.Textbox(label="Username")
log_password = gr.Textbox(label="Password", type="password")
log_btn = gr.Button("Login")
log_output = gr.Textbox()
log_btn.click(login, inputs=[log_username, log_password], outputs=log_output)
# Product Lifecycle Prediction Tab
with gr.Tab("Product Lifecycle Prediction"):
lifecycle_inputs = [
gr.Dropdown(["Plastic", "Metal", "Wood", "Composite", "Electronics"], label="Category"),
gr.Textbox(label="Product Name"),
gr.Number(label="Price"),
gr.Number(label="Rating"),
gr.Number(label="NumReviews"),
gr.Number(label="StockQuantity"),
gr.Number(label="Discount")
]
lifecycle_output = gr.Textbox(label="Prediction")
lifecycle_btn = gr.Button("Predict")
lifecycle_btn.click(predict_lifecycle, inputs=lifecycle_inputs, outputs=lifecycle_output)
# Dynamic Pricing Tab
with gr.Tab("Dynamic Pricing"):
pricing_inputs = [
gr.Dropdown(["iPhone 13", "Nike Shoes", "Samsung TV", "Adidas Jacket", "Dell Laptop", "Sony Headphones", "Apple Watch",
"LG Refrigerator", "HP Printer", "Bose Speaker"], label="Product Name"),
gr.Dropdown(["Electronics", "Fashion", "Home Appliances"], label="Category"),
gr.Number(label="Base Price"),
gr.Number(label="Competitor Price"),
gr.Dropdown(["Low", "Medium", "High"], label="Demand"),
gr.Number(label="Stock"),
gr.Number(label="Reviews"),
gr.Number(label="Rating"),
gr.Dropdown(["Holiday", "Summer", "Winter", "Off-season"], label="Season"),
gr.Number(label="Discount (%)")
]
pricing_output = gr.Textbox(label="Predicted Price")
pricing_btn = gr.Button("Predict")
pricing_btn.click(predict_price, inputs=pricing_inputs, outputs=pricing_output)
# Product Recommendation Tab
with gr.Tab("Product Recommendation"):
recommendation_input = gr.Dropdown(choices=df_recommendation['category'].unique().tolist(), label="Select Product Category")
recommendation_output = gr.Dataframe()
recommendation_btn = gr.Button("Recommend")
recommendation_btn.click(recommend_products, inputs=recommendation_input, outputs=recommendation_output)
# Circular Economy Analytics Tab
with gr.Tab("Circular Economy Analytics"):
dashboard_outputs = [
gr.Plot(label="Product Lifecycle Analytics"),
gr.Plot(label="Dynamic Pricing Insights"),
gr.Plot(label="User Engagement Trends"),
gr.Plot(label="Sustainability & Recycling Insights")
]
dashboard_btn = gr.Button("Generate Dashboard")
dashboard_btn.click(generate_dashboard, inputs=[], outputs=dashboard_outputs)
# AI Chatbot Tab
with gr.Tab("AI Chatbot"):
gr.Markdown("""
<div style="text-align: center;">
<img src="https://via.placeholder.com/400x200.png?text=AI+Chatbot" alt="Chatbot" style="width: 100%; max-width: 400px;">
</div>
""")
chatbot_input = gr.Textbox(label="Ask me anything about circular economy, product lifecycle, dynamic pricing, and recommendations!")
chatbot_output = gr.Textbox(label="AI Response")
chatbot_btn = gr.Button("Ask")
chatbot_btn.click(huggingface_chatbot, inputs=chatbot_input, outputs=chatbot_output)
# Simulate real-time data updates
def live_update():
while True:
update_live_data()
time.sleep(5)
threading.Thread(target=live_update, daemon=True).start()
# Launch the app
app.launch()
|