Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ import requests
|
|
16 |
import os # Import the os module to access environment variables
|
17 |
|
18 |
# Hugging Face API configuration
|
19 |
-
HUGGINGFACE_API_URL = "https://
|
20 |
HUGGINGFACE_API_KEY = os.environ["HUGGINGFACE_API_KEY"] # Access the API key from environment variables
|
21 |
|
22 |
# Hugging Face Chatbot Function
|
@@ -243,23 +243,74 @@ with gr.Blocks() as app:
|
|
243 |
""")
|
244 |
gr.Markdown("# 🔐 Circular Economy Marketplace")
|
245 |
|
246 |
-
#
|
247 |
with gr.Tab("Login/Register"):
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
with gr.Tab("Product Lifecycle Prediction"):
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
with gr.Tab("Dynamic Pricing"):
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
with gr.Tab("Product Recommendation"):
|
257 |
-
|
|
|
|
|
|
|
258 |
|
|
|
259 |
with gr.Tab("Circular Economy Analytics"):
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
with gr.Tab("AI Chatbot"):
|
264 |
gr.Markdown("""
|
265 |
<div style="text-align: center;">
|
|
|
16 |
import os # Import the os module to access environment variables
|
17 |
|
18 |
# Hugging Face API configuration
|
19 |
+
HUGGINGFACE_API_URL = "https://api-inference.huggingface.co/models/gpt2" # Replace with the desired model
|
20 |
HUGGINGFACE_API_KEY = os.environ["HUGGINGFACE_API_KEY"] # Access the API key from environment variables
|
21 |
|
22 |
# Hugging Face Chatbot Function
|
|
|
243 |
""")
|
244 |
gr.Markdown("# 🔐 Circular Economy Marketplace")
|
245 |
|
246 |
+
# Login/Register Tab
|
247 |
with gr.Tab("Login/Register"):
|
248 |
+
with gr.Tab("Register"):
|
249 |
+
reg_username = gr.Textbox(label="Username")
|
250 |
+
reg_password = gr.Textbox(label="Password", type="password")
|
251 |
+
reg_btn = gr.Button("Register")
|
252 |
+
reg_output = gr.Textbox()
|
253 |
+
reg_btn.click(register, inputs=[reg_username, reg_password], outputs=reg_output)
|
254 |
+
with gr.Tab("Login"):
|
255 |
+
log_username = gr.Textbox(label="Username")
|
256 |
+
log_password = gr.Textbox(label="Password", type="password")
|
257 |
+
log_btn = gr.Button("Login")
|
258 |
+
log_output = gr.Textbox()
|
259 |
+
log_btn.click(login, inputs=[log_username, log_password], outputs=log_output)
|
260 |
+
|
261 |
+
# Product Lifecycle Prediction Tab
|
262 |
with gr.Tab("Product Lifecycle Prediction"):
|
263 |
+
lifecycle_inputs = [
|
264 |
+
gr.Dropdown(["Plastic", "Metal", "Wood", "Composite", "Electronics"], label="Category"),
|
265 |
+
gr.Textbox(label="Product Name"),
|
266 |
+
gr.Number(label="Price"),
|
267 |
+
gr.Number(label="Rating"),
|
268 |
+
gr.Number(label="NumReviews"),
|
269 |
+
gr.Number(label="StockQuantity"),
|
270 |
+
gr.Number(label="Discount")
|
271 |
+
]
|
272 |
+
lifecycle_output = gr.Textbox(label="Prediction")
|
273 |
+
lifecycle_btn = gr.Button("Predict")
|
274 |
+
lifecycle_btn.click(predict_lifecycle, inputs=lifecycle_inputs, outputs=lifecycle_output)
|
275 |
+
|
276 |
+
# Dynamic Pricing Tab
|
277 |
with gr.Tab("Dynamic Pricing"):
|
278 |
+
pricing_inputs = [
|
279 |
+
gr.Dropdown(["iPhone 13", "Nike Shoes", "Samsung TV", "Adidas Jacket", "Dell Laptop", "Sony Headphones", "Apple Watch",
|
280 |
+
"LG Refrigerator", "HP Printer", "Bose Speaker"], label="Product Name"),
|
281 |
+
gr.Dropdown(["Electronics", "Fashion", "Home Appliances"], label="Category"),
|
282 |
+
gr.Number(label="Base Price"),
|
283 |
+
gr.Number(label="Competitor Price"),
|
284 |
+
gr.Dropdown(["Low", "Medium", "High"], label="Demand"),
|
285 |
+
gr.Number(label="Stock"),
|
286 |
+
gr.Number(label="Reviews"),
|
287 |
+
gr.Number(label="Rating"),
|
288 |
+
gr.Dropdown(["Holiday", "Summer", "Winter", "Off-season"], label="Season"),
|
289 |
+
gr.Number(label="Discount (%)")
|
290 |
+
]
|
291 |
+
pricing_output = gr.Textbox(label="Predicted Price")
|
292 |
+
pricing_btn = gr.Button("Predict")
|
293 |
+
pricing_btn.click(predict_price, inputs=pricing_inputs, outputs=pricing_output)
|
294 |
+
|
295 |
+
# Product Recommendation Tab
|
296 |
with gr.Tab("Product Recommendation"):
|
297 |
+
recommendation_input = gr.Dropdown(choices=df_recommendation['category'].unique().tolist(), label="Select Product Category")
|
298 |
+
recommendation_output = gr.Dataframe()
|
299 |
+
recommendation_btn = gr.Button("Recommend")
|
300 |
+
recommendation_btn.click(recommend_products, inputs=recommendation_input, outputs=recommendation_output)
|
301 |
|
302 |
+
# Circular Economy Analytics Tab
|
303 |
with gr.Tab("Circular Economy Analytics"):
|
304 |
+
dashboard_outputs = [
|
305 |
+
gr.Plot(label="Product Lifecycle Analytics"),
|
306 |
+
gr.Plot(label="Dynamic Pricing Insights"),
|
307 |
+
gr.Plot(label="User Engagement Trends"),
|
308 |
+
gr.Plot(label="Sustainability & Recycling Insights")
|
309 |
+
]
|
310 |
+
dashboard_btn = gr.Button("Generate Dashboard")
|
311 |
+
dashboard_btn.click(generate_dashboard, inputs=[], outputs=dashboard_outputs)
|
312 |
+
|
313 |
+
# AI Chatbot Tab
|
314 |
with gr.Tab("AI Chatbot"):
|
315 |
gr.Markdown("""
|
316 |
<div style="text-align: center;">
|