Spaces:
Running
on
Zero
Running
on
Zero
add onnx export
Browse files- cosyvoice/bin/export_jit.py +8 -1
- cosyvoice/bin/export_onnx.py +71 -190
- cosyvoice/cli/cosyvoice.py +4 -9
- cosyvoice/cli/model.py +13 -39
- cosyvoice/flow/flow_matching.py +10 -43
- requirements.txt +1 -0
cosyvoice/bin/export_jit.py
CHANGED
@@ -44,7 +44,7 @@ def main():
|
|
44 |
torch._C._jit_set_profiling_mode(False)
|
45 |
torch._C._jit_set_profiling_executor(False)
|
46 |
|
47 |
-
cosyvoice = CosyVoice(args.model_dir, load_jit=False,
|
48 |
|
49 |
# 1. export llm text_encoder
|
50 |
llm_text_encoder = cosyvoice.model.llm.text_encoder.half()
|
@@ -60,5 +60,12 @@ def main():
|
|
60 |
script = torch.jit.optimize_for_inference(script)
|
61 |
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if __name__ == '__main__':
|
64 |
main()
|
|
|
44 |
torch._C._jit_set_profiling_mode(False)
|
45 |
torch._C._jit_set_profiling_executor(False)
|
46 |
|
47 |
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False)
|
48 |
|
49 |
# 1. export llm text_encoder
|
50 |
llm_text_encoder = cosyvoice.model.llm.text_encoder.half()
|
|
|
60 |
script = torch.jit.optimize_for_inference(script)
|
61 |
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
62 |
|
63 |
+
# 3. export flow encoder
|
64 |
+
flow_encoder = cosyvoice.model.flow.encoder
|
65 |
+
script = torch.jit.script(flow_encoder)
|
66 |
+
script = torch.jit.freeze(script)
|
67 |
+
script = torch.jit.optimize_for_inference(script)
|
68 |
+
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
69 |
+
|
70 |
if __name__ == '__main__':
|
71 |
main()
|
cosyvoice/bin/export_onnx.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
|
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -12,217 +13,97 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
|
|
|
|
15 |
import argparse
|
16 |
import logging
|
|
|
17 |
import os
|
18 |
import sys
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
import
|
23 |
-
|
24 |
-
# try:
|
25 |
-
# import tensorrt
|
26 |
-
# import tensorrt as trt
|
27 |
-
# except ImportError:
|
28 |
-
# error_msg_zh = [
|
29 |
-
# "step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
30 |
-
# "step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
31 |
-
# "step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/"
|
32 |
-
# ]
|
33 |
-
# print("\n".join(error_msg_zh))
|
34 |
-
# sys.exit(1)
|
35 |
-
|
36 |
import torch
|
|
|
37 |
from cosyvoice.cli.cosyvoice import CosyVoice
|
38 |
|
39 |
|
40 |
-
def
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
# Load the ONNX model
|
49 |
-
session = ort.InferenceSession(onnx_file, sess_options=sess_options, providers=providers)
|
50 |
-
|
51 |
-
x_np = x.cpu().numpy()
|
52 |
-
mask_np = mask.cpu().numpy()
|
53 |
-
mu_np = mu.cpu().numpy()
|
54 |
-
t_np = np.array(t.cpu())
|
55 |
-
spks_np = spks.cpu().numpy()
|
56 |
-
cond_np = cond.cpu().numpy()
|
57 |
-
|
58 |
-
ort_inputs = {
|
59 |
-
'x': x_np,
|
60 |
-
'mask': mask_np,
|
61 |
-
'mu': mu_np,
|
62 |
-
't': t_np,
|
63 |
-
'spks': spks_np,
|
64 |
-
'cond': cond_np
|
65 |
-
}
|
66 |
-
|
67 |
-
output = session.run(None, ort_inputs)
|
68 |
-
|
69 |
-
return output[0]
|
70 |
-
|
71 |
-
# def calculate_tensorrt(trt_file, x, mask, mu, t, spks, cond):
|
72 |
-
# trt.init_libnvinfer_plugins(None, "")
|
73 |
-
# logger = trt.Logger(trt.Logger.WARNING)
|
74 |
-
# runtime = trt.Runtime(logger)
|
75 |
-
# with open(trt_file, 'rb') as f:
|
76 |
-
# serialized_engine = f.read()
|
77 |
-
# engine = runtime.deserialize_cuda_engine(serialized_engine)
|
78 |
-
# context = engine.create_execution_context()
|
79 |
-
|
80 |
-
# bs = x.shape[0]
|
81 |
-
# hs = x.shape[1]
|
82 |
-
# seq_len = x.shape[2]
|
83 |
-
|
84 |
-
# ret = torch.zeros_like(x)
|
85 |
-
|
86 |
-
# # Set input shapes for dynamic dimensions
|
87 |
-
# context.set_input_shape("x", x.shape)
|
88 |
-
# context.set_input_shape("mask", mask.shape)
|
89 |
-
# context.set_input_shape("mu", mu.shape)
|
90 |
-
# context.set_input_shape("t", t.shape)
|
91 |
-
# context.set_input_shape("spks", spks.shape)
|
92 |
-
# context.set_input_shape("cond", cond.shape)
|
93 |
-
|
94 |
-
# # bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
|
95 |
-
# # names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out']
|
96 |
-
# #
|
97 |
-
# # for i in range(len(bindings)):
|
98 |
-
# # context.set_tensor_address(names[i], bindings[i])
|
99 |
-
# #
|
100 |
-
# # handle = torch.cuda.current_stream().cuda_stream
|
101 |
-
# # context.execute_async_v3(stream_handle=handle)
|
102 |
-
|
103 |
-
# # Create a list of bindings
|
104 |
-
# bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())]
|
105 |
-
|
106 |
-
# # Execute the inference
|
107 |
-
# context.execute_v2(bindings=bindings)
|
108 |
-
|
109 |
-
# torch.cuda.synchronize()
|
110 |
-
|
111 |
-
# return ret
|
112 |
-
|
113 |
-
|
114 |
-
# def test_calculate_value(estimator, onnx_file, trt_file, dummy_input, args):
|
115 |
-
# torch_output = estimator.forward(**dummy_input).cpu().detach().numpy()
|
116 |
-
# onnx_output = calculate_onnx(onnx_file, **dummy_input)
|
117 |
-
# tensorrt_output = calculate_tensorrt(trt_file, **dummy_input).cpu().detach().numpy()
|
118 |
-
# atol = 2e-3 # Absolute tolerance
|
119 |
-
# rtol = 1e-4 # Relative tolerance
|
120 |
-
|
121 |
-
# print(f"args.export_half: {args.export_half}, args.model_dir: {args.model_dir}")
|
122 |
-
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
123 |
-
|
124 |
-
# print("torch_output diff with onnx_output: ", )
|
125 |
-
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, onnx_output, atol, rtol))
|
126 |
-
# print(f"max diff value: ", np.max(np.fabs(torch_output - onnx_output)))
|
127 |
-
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
128 |
-
|
129 |
-
# print("torch_output diff with tensorrt_output: ")
|
130 |
-
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, tensorrt_output, atol, rtol))
|
131 |
-
# print(f"max diff value: ", np.max(np.fabs(torch_output - tensorrt_output)))
|
132 |
-
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
133 |
-
|
134 |
-
# print("onnx_output diff with tensorrt_output: ")
|
135 |
-
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(onnx_output, tensorrt_output, atol, rtol))
|
136 |
-
# print(f"max diff value: ", np.max(np.fabs(onnx_output - tensorrt_output)))
|
137 |
-
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
138 |
|
139 |
|
140 |
def get_args():
|
141 |
-
parser = argparse.ArgumentParser(description='
|
142 |
-
parser.add_argument('--model_dir',
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
args = parser.parse_args()
|
148 |
-
args.export_half = args.export_half == 'True'
|
149 |
-
args.exec_export = args.exec_export == 'True'
|
150 |
-
print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
151 |
print(args)
|
152 |
return args
|
153 |
|
154 |
def main():
|
155 |
args = get_args()
|
|
|
|
|
156 |
|
157 |
-
cosyvoice = CosyVoice(args.model_dir, load_jit=False,
|
|
|
|
|
158 |
estimator = cosyvoice.model.flow.decoder.estimator
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
batch_size = 1
|
163 |
-
seq_len = 256
|
164 |
out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
|
165 |
-
x =
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
)
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
# print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
207 |
-
# os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
208 |
-
|
209 |
-
# trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
210 |
-
# trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
211 |
-
|
212 |
-
# trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec')
|
213 |
-
# trt_max_len = args.trt_max_len
|
214 |
-
# trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
215 |
-
# f"--minShapes=x:1x{out_channels}x1,mask:1x1x1,mu:1x{out_channels}x1,t:1,spks:1x{out_channels},cond:1x{out_channels}x1 " \
|
216 |
-
# f"--maxShapes=x:1x{out_channels}x{trt_max_len},mask:1x1x{trt_max_len},mu:1x{out_channels}x{trt_max_len},t:1,spks:1x{out_channels},cond:1x{out_channels}x{trt_max_len} " + \
|
217 |
-
# ("--fp16" if args.export_half else "")
|
218 |
-
|
219 |
-
# print("execute ", trtexec_cmd)
|
220 |
-
|
221 |
-
# if args.exec_export:
|
222 |
-
# os.system(trtexec_cmd)
|
223 |
-
|
224 |
-
# dummy_input = {'x': x, 'mask': mask, 'mu': mu, 't': t, 'spks': spks, 'cond': cond}
|
225 |
-
# test_calculate_value(estimator, onnx_file_path, trt_file_path, dummy_input, args)
|
226 |
|
227 |
if __name__ == "__main__":
|
228 |
main()
|
|
|
1 |
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
|
16 |
+
from __future__ import print_function
|
17 |
+
|
18 |
import argparse
|
19 |
import logging
|
20 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
21 |
import os
|
22 |
import sys
|
23 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
25 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
26 |
+
import onnxruntime
|
27 |
+
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
import torch
|
29 |
+
from tqdm import tqdm
|
30 |
from cosyvoice.cli.cosyvoice import CosyVoice
|
31 |
|
32 |
|
33 |
+
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
34 |
+
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
35 |
+
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
36 |
+
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
37 |
+
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
38 |
+
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
39 |
+
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
40 |
+
return x, mask, mu, t, spks, cond
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
def get_args():
|
44 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
45 |
+
parser.add_argument('--model_dir',
|
46 |
+
type=str,
|
47 |
+
default='pretrained_models/CosyVoice-300M',
|
48 |
+
help='local path')
|
|
|
49 |
args = parser.parse_args()
|
|
|
|
|
|
|
50 |
print(args)
|
51 |
return args
|
52 |
|
53 |
def main():
|
54 |
args = get_args()
|
55 |
+
logging.basicConfig(level=logging.DEBUG,
|
56 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
57 |
|
58 |
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False)
|
59 |
+
|
60 |
+
# 1. export flow decoder estimator
|
61 |
estimator = cosyvoice.model.flow.decoder.estimator
|
62 |
|
63 |
+
device = cosyvoice.model.device
|
64 |
+
batch_size, seq_len = 1, 256
|
|
|
|
|
65 |
out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
|
66 |
+
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
67 |
+
torch.onnx.export(
|
68 |
+
estimator,
|
69 |
+
(x, mask, mu, t, spks, cond),
|
70 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
71 |
+
export_params=True,
|
72 |
+
opset_version=18,
|
73 |
+
do_constant_folding=True,
|
74 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
75 |
+
output_names=['estimator_out'],
|
76 |
+
dynamic_axes={
|
77 |
+
'x': {0: 'batch_size', 2: 'seq_len'},
|
78 |
+
'mask': {0: 'batch_size', 2: 'seq_len'},
|
79 |
+
'mu': {0: 'batch_size', 2: 'seq_len'},
|
80 |
+
'cond': {0: 'batch_size', 2: 'seq_len'},
|
81 |
+
't': {0: 'batch_size'},
|
82 |
+
'spks': {0: 'batch_size'},
|
83 |
+
'estimator_out': {0: 'batch_size', 2: 'seq_len'},
|
84 |
+
}
|
85 |
+
)
|
86 |
+
|
87 |
+
# 2. test computation consistency
|
88 |
+
option = onnxruntime.SessionOptions()
|
89 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
90 |
+
option.intra_op_num_threads = 1
|
91 |
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
92 |
+
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir), sess_options=option, providers=providers)
|
93 |
+
|
94 |
+
for _ in tqdm(range(10)):
|
95 |
+
x, mask, mu, t, spks, cond = get_dummy_input(random.randint(1, 6), random.randint(16, 512), out_channels, device)
|
96 |
+
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
97 |
+
ort_inputs = {
|
98 |
+
'x': x.cpu().numpy(),
|
99 |
+
'mask': mask.cpu().numpy(),
|
100 |
+
'mu': mu.cpu().numpy(),
|
101 |
+
't': t.cpu().numpy(),
|
102 |
+
'spks': spks.cpu().numpy(),
|
103 |
+
'cond': cond.cpu().numpy()
|
104 |
+
}
|
105 |
+
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
106 |
+
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
main()
|
cosyvoice/cli/cosyvoice.py
CHANGED
@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
|
|
21 |
|
22 |
class CosyVoice:
|
23 |
|
24 |
-
def __init__(self, model_dir, load_jit=True,
|
25 |
instruct = True if '-Instruct' in model_dir else False
|
26 |
self.model_dir = model_dir
|
27 |
if not os.path.exists(model_dir):
|
@@ -39,17 +39,12 @@ class CosyVoice:
|
|
39 |
self.model.load('{}/llm.pt'.format(model_dir),
|
40 |
'{}/flow.pt'.format(model_dir),
|
41 |
'{}/hift.pt'.format(model_dir))
|
42 |
-
|
43 |
if load_jit:
|
44 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
45 |
-
'{}/llm.llm.fp16.zip'.format(model_dir)
|
46 |
-
|
47 |
-
# if load_trt:
|
48 |
-
# self.model.load_trt(model_dir, use_fp16)
|
49 |
-
|
50 |
if load_onnx:
|
51 |
-
self.model.load_onnx(model_dir
|
52 |
-
|
53 |
del configs
|
54 |
|
55 |
def list_avaliable_spks(self):
|
|
|
21 |
|
22 |
class CosyVoice:
|
23 |
|
24 |
+
def __init__(self, model_dir, load_jit=True, load_onnx=True):
|
25 |
instruct = True if '-Instruct' in model_dir else False
|
26 |
self.model_dir = model_dir
|
27 |
if not os.path.exists(model_dir):
|
|
|
39 |
self.model.load('{}/llm.pt'.format(model_dir),
|
40 |
'{}/flow.pt'.format(model_dir),
|
41 |
'{}/hift.pt'.format(model_dir))
|
|
|
42 |
if load_jit:
|
43 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
44 |
+
'{}/llm.llm.fp16.zip'.format(model_dir),
|
45 |
+
'{}/flow.encoder.fp32.zip'.format(model_dir))
|
|
|
|
|
|
|
46 |
if load_onnx:
|
47 |
+
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
|
|
|
48 |
del configs
|
49 |
|
50 |
def list_avaliable_spks(self):
|
cosyvoice/cli/model.py
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
import os
|
15 |
import torch
|
16 |
import numpy as np
|
17 |
import threading
|
@@ -20,7 +19,6 @@ from contextlib import nullcontext
|
|
20 |
import uuid
|
21 |
from cosyvoice.utils.common import fade_in_out
|
22 |
import numpy as np
|
23 |
-
import onnxruntime as ort
|
24 |
|
25 |
class CosyVoiceModel:
|
26 |
|
@@ -62,47 +60,22 @@ class CosyVoiceModel:
|
|
62 |
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
63 |
self.hift.to(self.device).eval()
|
64 |
|
65 |
-
def load_jit(self, llm_text_encoder_model, llm_llm_model):
|
66 |
llm_text_encoder = torch.jit.load(llm_text_encoder_model)
|
67 |
self.llm.text_encoder = llm_text_encoder
|
68 |
llm_llm = torch.jit.load(llm_llm_model)
|
69 |
self.llm.llm = llm_llm
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# logger = trt.Logger(trt.Logger.WARNING)
|
80 |
-
# runtime = trt.Runtime(logger)
|
81 |
-
# with open(trt_file_path, 'rb') as f:
|
82 |
-
# serialized_engine = f.read()
|
83 |
-
# engine = runtime.deserialize_cuda_engine(serialized_engine)
|
84 |
-
# self.flow.decoder.estimator_context = engine.create_execution_context()
|
85 |
-
# self.flow.decoder.estimator = None
|
86 |
-
|
87 |
-
def load_onnx(self, model_dir, use_fp16):
|
88 |
-
onnx_file_name = 'estimator_fp16.onnx' if use_fp16 else 'estimator_fp32.onnx'
|
89 |
-
onnx_file_path = os.path.join(model_dir, onnx_file_name)
|
90 |
-
if not os.path.isfile(onnx_file_path):
|
91 |
-
raise f"{onnx_file_path} does not exist. Please use bin/export_trt.py to generate .onnx file"
|
92 |
-
|
93 |
-
providers = ['CUDAExecutionProvider']
|
94 |
-
sess_options = ort.SessionOptions()
|
95 |
-
|
96 |
-
# Add TensorRT Execution Provider
|
97 |
-
providers = [
|
98 |
-
'CUDAExecutionProvider'
|
99 |
-
]
|
100 |
-
|
101 |
-
# Load the ONNX model
|
102 |
-
self.flow.decoder.session = ort.InferenceSession(onnx_file_path, sess_options=sess_options, providers=providers)
|
103 |
-
# self.flow.decoder.estimator_context = None
|
104 |
-
self.flow.decoder.estimator = None
|
105 |
-
|
106 |
|
107 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
108 |
with self.llm_context:
|
@@ -207,4 +180,5 @@ class CosyVoiceModel:
|
|
207 |
self.llm_end_dict.pop(this_uuid)
|
208 |
self.mel_overlap_dict.pop(this_uuid)
|
209 |
self.hift_cache_dict.pop(this_uuid)
|
210 |
-
torch.cuda.
|
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
|
|
14 |
import torch
|
15 |
import numpy as np
|
16 |
import threading
|
|
|
19 |
import uuid
|
20 |
from cosyvoice.utils.common import fade_in_out
|
21 |
import numpy as np
|
|
|
22 |
|
23 |
class CosyVoiceModel:
|
24 |
|
|
|
60 |
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
61 |
self.hift.to(self.device).eval()
|
62 |
|
63 |
+
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
64 |
llm_text_encoder = torch.jit.load(llm_text_encoder_model)
|
65 |
self.llm.text_encoder = llm_text_encoder
|
66 |
llm_llm = torch.jit.load(llm_llm_model)
|
67 |
self.llm.llm = llm_llm
|
68 |
+
flow_encoder = torch.jit.load(flow_encoder_model)
|
69 |
+
self.flow.encoder = flow_encoder
|
70 |
|
71 |
+
def load_onnx(self, flow_decoder_estimator_model):
|
72 |
+
import onnxruntime
|
73 |
+
option = onnxruntime.SessionOptions()
|
74 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
75 |
+
option.intra_op_num_threads = 1
|
76 |
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
77 |
+
del self.flow.decoder.estimator
|
78 |
+
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
81 |
with self.llm_context:
|
|
|
180 |
self.llm_end_dict.pop(this_uuid)
|
181 |
self.mel_overlap_dict.pop(this_uuid)
|
182 |
self.hift_cache_dict.pop(this_uuid)
|
183 |
+
if torch.cuda.is_available():
|
184 |
+
torch.cuda.synchronize()
|
cosyvoice/flow/flow_matching.py
CHANGED
@@ -31,8 +31,6 @@ class ConditionalCFM(BASECFM):
|
|
31 |
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
32 |
# Just change the architecture of the estimator here
|
33 |
self.estimator = estimator
|
34 |
-
self.estimator_context = None # for tensorrt
|
35 |
-
self.session = None # for onnx
|
36 |
|
37 |
@torch.inference_mode()
|
38 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
@@ -82,10 +80,10 @@ class ConditionalCFM(BASECFM):
|
|
82 |
sol = []
|
83 |
|
84 |
for step in range(1, len(t_span)):
|
85 |
-
dphi_dt = self.
|
86 |
# Classifier-Free Guidance inference introduced in VoiceBox
|
87 |
if self.inference_cfg_rate > 0:
|
88 |
-
cfg_dphi_dt = self.
|
89 |
x, mask,
|
90 |
torch.zeros_like(mu), t,
|
91 |
torch.zeros_like(spks) if spks is not None else None,
|
@@ -102,51 +100,20 @@ class ConditionalCFM(BASECFM):
|
|
102 |
return sol[-1]
|
103 |
|
104 |
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
105 |
-
|
106 |
-
if self.estimator is not None:
|
107 |
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
108 |
-
# elif self.estimator_context is not None:
|
109 |
-
# assert self.training is False, 'tensorrt cannot be used in training'
|
110 |
-
# bs = x.shape[0]
|
111 |
-
# hs = x.shape[1]
|
112 |
-
# seq_len = x.shape[2]
|
113 |
-
# # assert bs == 1 and hs == 80
|
114 |
-
# ret = torch.empty_like(x)
|
115 |
-
# self.estimator_context.set_input_shape("x", x.shape)
|
116 |
-
# self.estimator_context.set_input_shape("mask", mask.shape)
|
117 |
-
# self.estimator_context.set_input_shape("mu", mu.shape)
|
118 |
-
# self.estimator_context.set_input_shape("t", t.shape)
|
119 |
-
# self.estimator_context.set_input_shape("spks", spks.shape)
|
120 |
-
# self.estimator_context.set_input_shape("cond", cond.shape)
|
121 |
-
|
122 |
-
# # Create a list of bindings
|
123 |
-
# bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())]
|
124 |
-
|
125 |
-
# # Execute the inference
|
126 |
-
# self.estimator_context.execute_v2(bindings=bindings)
|
127 |
-
# return ret
|
128 |
else:
|
129 |
-
x_np = x.cpu().numpy()
|
130 |
-
mask_np = mask.cpu().numpy()
|
131 |
-
mu_np = mu.cpu().numpy()
|
132 |
-
t_np = t.cpu().numpy()
|
133 |
-
spks_np = spks.cpu().numpy()
|
134 |
-
cond_np = cond.cpu().numpy()
|
135 |
-
|
136 |
ort_inputs = {
|
137 |
-
'x':
|
138 |
-
'mask':
|
139 |
-
'mu':
|
140 |
-
't':
|
141 |
-
'spks':
|
142 |
-
'cond':
|
143 |
}
|
144 |
-
|
145 |
-
output = self.session.run(None, ort_inputs)[0]
|
146 |
-
|
147 |
return torch.tensor(output, dtype=x.dtype, device=x.device)
|
148 |
|
149 |
-
|
150 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
151 |
"""Computes diffusion loss
|
152 |
|
|
|
31 |
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
32 |
# Just change the architecture of the estimator here
|
33 |
self.estimator = estimator
|
|
|
|
|
34 |
|
35 |
@torch.inference_mode()
|
36 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
|
|
80 |
sol = []
|
81 |
|
82 |
for step in range(1, len(t_span)):
|
83 |
+
dphi_dt = self.forward_estimator(x, mask, mu, t, spks, cond)
|
84 |
# Classifier-Free Guidance inference introduced in VoiceBox
|
85 |
if self.inference_cfg_rate > 0:
|
86 |
+
cfg_dphi_dt = self.forward_estimator(
|
87 |
x, mask,
|
88 |
torch.zeros_like(mu), t,
|
89 |
torch.zeros_like(spks) if spks is not None else None,
|
|
|
100 |
return sol[-1]
|
101 |
|
102 |
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
103 |
+
if isinstance(self.estimator, torch.nn.Module):
|
|
|
104 |
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
ort_inputs = {
|
107 |
+
'x': x.cpu().numpy(),
|
108 |
+
'mask': mask.cpu().numpy(),
|
109 |
+
'mu': mu.cpu().numpy(),
|
110 |
+
't': t.cpu().numpy(),
|
111 |
+
'spks': spks.cpu().numpy(),
|
112 |
+
'cond': cond.cpu().numpy()
|
113 |
}
|
114 |
+
output = self.estimator.run(None, ort_inputs)[0]
|
|
|
|
|
115 |
return torch.tensor(output, dtype=x.dtype, device=x.device)
|
116 |
|
|
|
117 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
118 |
"""Computes diffusion loss
|
119 |
|
requirements.txt
CHANGED
@@ -15,6 +15,7 @@ matplotlib==3.7.5
|
|
15 |
modelscope==1.15.0
|
16 |
networkx==3.1
|
17 |
omegaconf==2.3.0
|
|
|
18 |
onnxruntime-gpu==1.16.0; sys_platform == 'linux'
|
19 |
onnxruntime==1.16.0; sys_platform == 'darwin' or sys_platform == 'windows'
|
20 |
openai-whisper==20231117
|
|
|
15 |
modelscope==1.15.0
|
16 |
networkx==3.1
|
17 |
omegaconf==2.3.0
|
18 |
+
onnx==1.16.0
|
19 |
onnxruntime-gpu==1.16.0; sys_platform == 'linux'
|
20 |
onnxruntime==1.16.0; sys_platform == 'darwin' or sys_platform == 'windows'
|
21 |
openai-whisper==20231117
|