Spaces:
Running
on
Zero
Running
on
Zero
Merge pull request #347 from hexisyztem/inference_streaming
Browse files- cosyvoice/bin/export_onnx.py +228 -0
- cosyvoice/bin/export_trt.py +0 -126
- cosyvoice/cli/cosyvoice.py +8 -4
- cosyvoice/cli/model.py +35 -13
- cosyvoice/flow/flow_matching.py +44 -21
cosyvoice/bin/export_onnx.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
import sys
|
19 |
+
|
20 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
21 |
+
import onnxruntime as ort
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
# try:
|
25 |
+
# import tensorrt
|
26 |
+
# import tensorrt as trt
|
27 |
+
# except ImportError:
|
28 |
+
# error_msg_zh = [
|
29 |
+
# "step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
30 |
+
# "step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
31 |
+
# "step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/"
|
32 |
+
# ]
|
33 |
+
# print("\n".join(error_msg_zh))
|
34 |
+
# sys.exit(1)
|
35 |
+
|
36 |
+
import torch
|
37 |
+
from cosyvoice.cli.cosyvoice import CosyVoice
|
38 |
+
|
39 |
+
|
40 |
+
def calculate_onnx(onnx_file, x, mask, mu, t, spks, cond):
|
41 |
+
providers = ['CUDAExecutionProvider']
|
42 |
+
sess_options = ort.SessionOptions()
|
43 |
+
|
44 |
+
providers = [
|
45 |
+
'CUDAExecutionProvider'
|
46 |
+
]
|
47 |
+
|
48 |
+
# Load the ONNX model
|
49 |
+
session = ort.InferenceSession(onnx_file, sess_options=sess_options, providers=providers)
|
50 |
+
|
51 |
+
x_np = x.cpu().numpy()
|
52 |
+
mask_np = mask.cpu().numpy()
|
53 |
+
mu_np = mu.cpu().numpy()
|
54 |
+
t_np = np.array(t.cpu())
|
55 |
+
spks_np = spks.cpu().numpy()
|
56 |
+
cond_np = cond.cpu().numpy()
|
57 |
+
|
58 |
+
ort_inputs = {
|
59 |
+
'x': x_np,
|
60 |
+
'mask': mask_np,
|
61 |
+
'mu': mu_np,
|
62 |
+
't': t_np,
|
63 |
+
'spks': spks_np,
|
64 |
+
'cond': cond_np
|
65 |
+
}
|
66 |
+
|
67 |
+
output = session.run(None, ort_inputs)
|
68 |
+
|
69 |
+
return output[0]
|
70 |
+
|
71 |
+
# def calculate_tensorrt(trt_file, x, mask, mu, t, spks, cond):
|
72 |
+
# trt.init_libnvinfer_plugins(None, "")
|
73 |
+
# logger = trt.Logger(trt.Logger.WARNING)
|
74 |
+
# runtime = trt.Runtime(logger)
|
75 |
+
# with open(trt_file, 'rb') as f:
|
76 |
+
# serialized_engine = f.read()
|
77 |
+
# engine = runtime.deserialize_cuda_engine(serialized_engine)
|
78 |
+
# context = engine.create_execution_context()
|
79 |
+
|
80 |
+
# bs = x.shape[0]
|
81 |
+
# hs = x.shape[1]
|
82 |
+
# seq_len = x.shape[2]
|
83 |
+
|
84 |
+
# ret = torch.zeros_like(x)
|
85 |
+
|
86 |
+
# # Set input shapes for dynamic dimensions
|
87 |
+
# context.set_input_shape("x", x.shape)
|
88 |
+
# context.set_input_shape("mask", mask.shape)
|
89 |
+
# context.set_input_shape("mu", mu.shape)
|
90 |
+
# context.set_input_shape("t", t.shape)
|
91 |
+
# context.set_input_shape("spks", spks.shape)
|
92 |
+
# context.set_input_shape("cond", cond.shape)
|
93 |
+
|
94 |
+
# # bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
|
95 |
+
# # names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out']
|
96 |
+
# #
|
97 |
+
# # for i in range(len(bindings)):
|
98 |
+
# # context.set_tensor_address(names[i], bindings[i])
|
99 |
+
# #
|
100 |
+
# # handle = torch.cuda.current_stream().cuda_stream
|
101 |
+
# # context.execute_async_v3(stream_handle=handle)
|
102 |
+
|
103 |
+
# # Create a list of bindings
|
104 |
+
# bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())]
|
105 |
+
|
106 |
+
# # Execute the inference
|
107 |
+
# context.execute_v2(bindings=bindings)
|
108 |
+
|
109 |
+
# torch.cuda.synchronize()
|
110 |
+
|
111 |
+
# return ret
|
112 |
+
|
113 |
+
|
114 |
+
# def test_calculate_value(estimator, onnx_file, trt_file, dummy_input, args):
|
115 |
+
# torch_output = estimator.forward(**dummy_input).cpu().detach().numpy()
|
116 |
+
# onnx_output = calculate_onnx(onnx_file, **dummy_input)
|
117 |
+
# tensorrt_output = calculate_tensorrt(trt_file, **dummy_input).cpu().detach().numpy()
|
118 |
+
# atol = 2e-3 # Absolute tolerance
|
119 |
+
# rtol = 1e-4 # Relative tolerance
|
120 |
+
|
121 |
+
# print(f"args.export_half: {args.export_half}, args.model_dir: {args.model_dir}")
|
122 |
+
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
123 |
+
|
124 |
+
# print("torch_output diff with onnx_output: ", )
|
125 |
+
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, onnx_output, atol, rtol))
|
126 |
+
# print(f"max diff value: ", np.max(np.fabs(torch_output - onnx_output)))
|
127 |
+
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
128 |
+
|
129 |
+
# print("torch_output diff with tensorrt_output: ")
|
130 |
+
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, tensorrt_output, atol, rtol))
|
131 |
+
# print(f"max diff value: ", np.max(np.fabs(torch_output - tensorrt_output)))
|
132 |
+
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
133 |
+
|
134 |
+
# print("onnx_output diff with tensorrt_output: ")
|
135 |
+
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(onnx_output, tensorrt_output, atol, rtol))
|
136 |
+
# print(f"max diff value: ", np.max(np.fabs(onnx_output - tensorrt_output)))
|
137 |
+
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
138 |
+
|
139 |
+
|
140 |
+
def get_args():
|
141 |
+
parser = argparse.ArgumentParser(description='Export your model for deployment')
|
142 |
+
parser.add_argument('--model_dir', type=str, default='pretrained_models/CosyVoice-300M', help='Local path to the model directory')
|
143 |
+
parser.add_argument('--export_half', type=str, choices=['True', 'False'], default='False', help='Export with half precision (FP16)')
|
144 |
+
# parser.add_argument('--trt_max_len', type=int, default=8192, help='Export max len')
|
145 |
+
parser.add_argument('--exec_export', type=str, choices=['True', 'False'], default='True', help='Exec export')
|
146 |
+
|
147 |
+
args = parser.parse_args()
|
148 |
+
args.export_half = args.export_half == 'True'
|
149 |
+
args.exec_export = args.exec_export == 'True'
|
150 |
+
print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
151 |
+
print(args)
|
152 |
+
return args
|
153 |
+
|
154 |
+
def main():
|
155 |
+
args = get_args()
|
156 |
+
|
157 |
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
158 |
+
estimator = cosyvoice.model.flow.decoder.estimator
|
159 |
+
|
160 |
+
dtype = torch.float32 if not args.export_half else torch.float16
|
161 |
+
device = torch.device("cuda")
|
162 |
+
batch_size = 1
|
163 |
+
seq_len = 256
|
164 |
+
out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
|
165 |
+
x = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
|
166 |
+
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
|
167 |
+
mu = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
|
168 |
+
t = torch.rand((batch_size, ), dtype=dtype, device=device)
|
169 |
+
spks = torch.rand((batch_size, out_channels), dtype=dtype, device=device)
|
170 |
+
cond = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
|
171 |
+
|
172 |
+
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
|
173 |
+
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
174 |
+
dummy_input = (x, mask, mu, t, spks, cond)
|
175 |
+
|
176 |
+
estimator = estimator.to(dtype)
|
177 |
+
|
178 |
+
if args.exec_export:
|
179 |
+
torch.onnx.export(
|
180 |
+
estimator,
|
181 |
+
dummy_input,
|
182 |
+
onnx_file_path,
|
183 |
+
export_params=True,
|
184 |
+
opset_version=18,
|
185 |
+
do_constant_folding=True,
|
186 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
187 |
+
output_names=['estimator_out'],
|
188 |
+
dynamic_axes={
|
189 |
+
'x': {2: 'seq_len'},
|
190 |
+
'mask': {2: 'seq_len'},
|
191 |
+
'mu': {2: 'seq_len'},
|
192 |
+
'cond': {2: 'seq_len'},
|
193 |
+
'estimator_out': {2: 'seq_len'},
|
194 |
+
}
|
195 |
+
)
|
196 |
+
|
197 |
+
# tensorrt_path = os.environ.get('tensorrt_root_dir')
|
198 |
+
# if not tensorrt_path:
|
199 |
+
# raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
|
200 |
+
|
201 |
+
# if not os.path.isdir(tensorrt_path):
|
202 |
+
# raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
|
203 |
+
|
204 |
+
# trt_lib_path = os.path.join(tensorrt_path, "lib")
|
205 |
+
# if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
|
206 |
+
# print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
207 |
+
# os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
208 |
+
|
209 |
+
# trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
210 |
+
# trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
211 |
+
|
212 |
+
# trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec')
|
213 |
+
# trt_max_len = args.trt_max_len
|
214 |
+
# trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
215 |
+
# f"--minShapes=x:1x{out_channels}x1,mask:1x1x1,mu:1x{out_channels}x1,t:1,spks:1x{out_channels},cond:1x{out_channels}x1 " \
|
216 |
+
# f"--maxShapes=x:1x{out_channels}x{trt_max_len},mask:1x1x{trt_max_len},mu:1x{out_channels}x{trt_max_len},t:1,spks:1x{out_channels},cond:1x{out_channels}x{trt_max_len} " + \
|
217 |
+
# ("--fp16" if args.export_half else "")
|
218 |
+
|
219 |
+
# print("execute ", trtexec_cmd)
|
220 |
+
|
221 |
+
# if args.exec_export:
|
222 |
+
# os.system(trtexec_cmd)
|
223 |
+
|
224 |
+
# dummy_input = {'x': x, 'mask': mask, 'mu': mu, 't': t, 'spks': spks, 'cond': cond}
|
225 |
+
# test_calculate_value(estimator, onnx_file_path, trt_file_path, dummy_input, args)
|
226 |
+
|
227 |
+
if __name__ == "__main__":
|
228 |
+
main()
|
cosyvoice/bin/export_trt.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import argparse
|
16 |
-
import logging
|
17 |
-
import os
|
18 |
-
import sys
|
19 |
-
|
20 |
-
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
21 |
-
|
22 |
-
try:
|
23 |
-
import tensorrt
|
24 |
-
except ImportError:
|
25 |
-
error_msg_zh = [
|
26 |
-
"step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
27 |
-
"step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
28 |
-
"step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/"
|
29 |
-
]
|
30 |
-
print("\n".join(error_msg_zh))
|
31 |
-
sys.exit(1)
|
32 |
-
|
33 |
-
import torch
|
34 |
-
from cosyvoice.cli.cosyvoice import CosyVoice
|
35 |
-
|
36 |
-
def get_args():
|
37 |
-
parser = argparse.ArgumentParser(description='Export your model for deployment')
|
38 |
-
parser.add_argument('--model_dir',
|
39 |
-
type=str,
|
40 |
-
default='pretrained_models/CosyVoice-300M-SFT',
|
41 |
-
help='Local path to the model directory')
|
42 |
-
|
43 |
-
parser.add_argument('--export_half',
|
44 |
-
action='store_true',
|
45 |
-
help='Export with half precision (FP16)')
|
46 |
-
|
47 |
-
args = parser.parse_args()
|
48 |
-
print(args)
|
49 |
-
return args
|
50 |
-
|
51 |
-
def main():
|
52 |
-
args = get_args()
|
53 |
-
|
54 |
-
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
55 |
-
estimator = cosyvoice.model.flow.decoder.estimator
|
56 |
-
|
57 |
-
dtype = torch.float32 if not args.export_half else torch.float16
|
58 |
-
device = torch.device("cuda")
|
59 |
-
batch_size = 1
|
60 |
-
seq_len = 256
|
61 |
-
hidden_size = cosyvoice.model.flow.output_size
|
62 |
-
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
63 |
-
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
|
64 |
-
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
65 |
-
t = torch.rand((batch_size, ), dtype=dtype, device=device)
|
66 |
-
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
67 |
-
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
68 |
-
|
69 |
-
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
|
70 |
-
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
71 |
-
dummy_input = (x, mask, mu, t, spks, cond)
|
72 |
-
|
73 |
-
estimator = estimator.to(dtype)
|
74 |
-
|
75 |
-
torch.onnx.export(
|
76 |
-
estimator,
|
77 |
-
dummy_input,
|
78 |
-
onnx_file_path,
|
79 |
-
export_params=True,
|
80 |
-
opset_version=18,
|
81 |
-
do_constant_folding=True,
|
82 |
-
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
83 |
-
output_names=['estimator_out'],
|
84 |
-
dynamic_axes={
|
85 |
-
'x': {2: 'seq_len'},
|
86 |
-
'mask': {2: 'seq_len'},
|
87 |
-
'mu': {2: 'seq_len'},
|
88 |
-
'cond': {2: 'seq_len'},
|
89 |
-
'estimator_out': {2: 'seq_len'},
|
90 |
-
}
|
91 |
-
)
|
92 |
-
|
93 |
-
tensorrt_path = os.environ.get('tensorrt_root_dir')
|
94 |
-
if not tensorrt_path:
|
95 |
-
raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
|
96 |
-
|
97 |
-
if not os.path.isdir(tensorrt_path):
|
98 |
-
raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
|
99 |
-
|
100 |
-
trt_lib_path = os.path.join(tensorrt_path, "lib")
|
101 |
-
if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
|
102 |
-
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
103 |
-
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
104 |
-
|
105 |
-
trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
106 |
-
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
107 |
-
|
108 |
-
trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec')
|
109 |
-
trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
110 |
-
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
111 |
-
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
|
112 |
-
("--fp16" if args.export_half else "")
|
113 |
-
|
114 |
-
print("execute ", trtexec_cmd)
|
115 |
-
|
116 |
-
os.system(trtexec_cmd)
|
117 |
-
|
118 |
-
# print("x.shape", x.shape)
|
119 |
-
# print("mask.shape", mask.shape)
|
120 |
-
# print("mu.shape", mu.shape)
|
121 |
-
# print("t.shape", t.shape)
|
122 |
-
# print("spks.shape", spks.shape)
|
123 |
-
# print("cond.shape", cond.shape)
|
124 |
-
|
125 |
-
if __name__ == "__main__":
|
126 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cosyvoice/cli/cosyvoice.py
CHANGED
@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
|
|
21 |
|
22 |
class CosyVoice:
|
23 |
|
24 |
-
def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
|
25 |
instruct = True if '-Instruct' in model_dir else False
|
26 |
self.model_dir = model_dir
|
27 |
if not os.path.exists(model_dir):
|
@@ -39,12 +39,16 @@ class CosyVoice:
|
|
39 |
self.model.load('{}/llm.pt'.format(model_dir),
|
40 |
'{}/flow.pt'.format(model_dir),
|
41 |
'{}/hift.pt'.format(model_dir))
|
42 |
-
|
43 |
if load_jit:
|
44 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
45 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
|
49 |
del configs
|
50 |
|
|
|
21 |
|
22 |
class CosyVoice:
|
23 |
|
24 |
+
def __init__(self, model_dir, load_jit=True, load_trt=False, load_onnx=True, use_fp16=False):
|
25 |
instruct = True if '-Instruct' in model_dir else False
|
26 |
self.model_dir = model_dir
|
27 |
if not os.path.exists(model_dir):
|
|
|
39 |
self.model.load('{}/llm.pt'.format(model_dir),
|
40 |
'{}/flow.pt'.format(model_dir),
|
41 |
'{}/hift.pt'.format(model_dir))
|
42 |
+
|
43 |
if load_jit:
|
44 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
45 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
46 |
+
|
47 |
+
# if load_trt:
|
48 |
+
# self.model.load_trt(model_dir, use_fp16)
|
49 |
+
|
50 |
+
if load_onnx:
|
51 |
+
self.model.load_onnx(model_dir, use_fp16)
|
52 |
|
53 |
del configs
|
54 |
|
cosyvoice/cli/model.py
CHANGED
@@ -19,6 +19,8 @@ import time
|
|
19 |
from contextlib import nullcontext
|
20 |
import uuid
|
21 |
from cosyvoice.utils.common import fade_in_out
|
|
|
|
|
22 |
|
23 |
class CosyVoiceModel:
|
24 |
|
@@ -66,21 +68,41 @@ class CosyVoiceModel:
|
|
66 |
llm_llm = torch.jit.load(llm_llm_model)
|
67 |
self.llm.llm = llm_llm
|
68 |
|
69 |
-
def load_trt(self, model_dir, use_fp16):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
with open(trt_file_path, 'rb') as f:
|
80 |
-
serialized_engine = f.read()
|
81 |
-
engine = runtime.deserialize_cuda_engine(serialized_engine)
|
82 |
-
self.flow.decoder.estimator_context = engine.create_execution_context()
|
83 |
self.flow.decoder.estimator = None
|
|
|
84 |
|
85 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
86 |
with self.llm_context:
|
|
|
19 |
from contextlib import nullcontext
|
20 |
import uuid
|
21 |
from cosyvoice.utils.common import fade_in_out
|
22 |
+
import numpy as np
|
23 |
+
import onnxruntime as ort
|
24 |
|
25 |
class CosyVoiceModel:
|
26 |
|
|
|
68 |
llm_llm = torch.jit.load(llm_llm_model)
|
69 |
self.llm.llm = llm_llm
|
70 |
|
71 |
+
# def load_trt(self, model_dir, use_fp16):
|
72 |
+
# import tensorrt as trt
|
73 |
+
# trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan'
|
74 |
+
# trt_file_path = os.path.join(model_dir, trt_file_name)
|
75 |
+
# if not os.path.isfile(trt_file_path):
|
76 |
+
# raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file"
|
77 |
+
|
78 |
+
# trt.init_libnvinfer_plugins(None, "")
|
79 |
+
# logger = trt.Logger(trt.Logger.WARNING)
|
80 |
+
# runtime = trt.Runtime(logger)
|
81 |
+
# with open(trt_file_path, 'rb') as f:
|
82 |
+
# serialized_engine = f.read()
|
83 |
+
# engine = runtime.deserialize_cuda_engine(serialized_engine)
|
84 |
+
# self.flow.decoder.estimator_context = engine.create_execution_context()
|
85 |
+
# self.flow.decoder.estimator = None
|
86 |
+
|
87 |
+
def load_onnx(self, model_dir, use_fp16):
|
88 |
+
onnx_file_name = 'estimator_fp16.onnx' if use_fp16 else 'estimator_fp32.onnx'
|
89 |
+
onnx_file_path = os.path.join(model_dir, onnx_file_name)
|
90 |
+
if not os.path.isfile(onnx_file_path):
|
91 |
+
raise f"{onnx_file_path} does not exist. Please use bin/export_trt.py to generate .onnx file"
|
92 |
+
|
93 |
+
providers = ['CUDAExecutionProvider']
|
94 |
+
sess_options = ort.SessionOptions()
|
95 |
+
|
96 |
+
# Add TensorRT Execution Provider
|
97 |
+
providers = [
|
98 |
+
'CUDAExecutionProvider'
|
99 |
+
]
|
100 |
|
101 |
+
# Load the ONNX model
|
102 |
+
self.flow.decoder.session = ort.InferenceSession(onnx_file_path, sess_options=sess_options, providers=providers)
|
103 |
+
# self.flow.decoder.estimator_context = None
|
|
|
|
|
|
|
|
|
104 |
self.flow.decoder.estimator = None
|
105 |
+
|
106 |
|
107 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
108 |
with self.llm_context:
|
cosyvoice/flow/flow_matching.py
CHANGED
@@ -14,6 +14,8 @@
|
|
14 |
import torch
|
15 |
import torch.nn.functional as F
|
16 |
from matcha.models.components.flow_matching import BASECFM
|
|
|
|
|
17 |
|
18 |
class ConditionalCFM(BASECFM):
|
19 |
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
@@ -29,6 +31,8 @@ class ConditionalCFM(BASECFM):
|
|
29 |
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
30 |
# Just change the architecture of the estimator here
|
31 |
self.estimator = estimator
|
|
|
|
|
32 |
|
33 |
@torch.inference_mode()
|
34 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
@@ -101,28 +105,47 @@ class ConditionalCFM(BASECFM):
|
|
101 |
|
102 |
if self.estimator is not None:
|
103 |
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
else:
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
return ret
|
126 |
|
127 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
128 |
"""Computes diffusion loss
|
|
|
14 |
import torch
|
15 |
import torch.nn.functional as F
|
16 |
from matcha.models.components.flow_matching import BASECFM
|
17 |
+
import onnxruntime as ort
|
18 |
+
import numpy as np
|
19 |
|
20 |
class ConditionalCFM(BASECFM):
|
21 |
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
|
|
31 |
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
32 |
# Just change the architecture of the estimator here
|
33 |
self.estimator = estimator
|
34 |
+
self.estimator_context = None # for tensorrt
|
35 |
+
self.session = None # for onnx
|
36 |
|
37 |
@torch.inference_mode()
|
38 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
|
|
105 |
|
106 |
if self.estimator is not None:
|
107 |
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
108 |
+
# elif self.estimator_context is not None:
|
109 |
+
# assert self.training is False, 'tensorrt cannot be used in training'
|
110 |
+
# bs = x.shape[0]
|
111 |
+
# hs = x.shape[1]
|
112 |
+
# seq_len = x.shape[2]
|
113 |
+
# # assert bs == 1 and hs == 80
|
114 |
+
# ret = torch.empty_like(x)
|
115 |
+
# self.estimator_context.set_input_shape("x", x.shape)
|
116 |
+
# self.estimator_context.set_input_shape("mask", mask.shape)
|
117 |
+
# self.estimator_context.set_input_shape("mu", mu.shape)
|
118 |
+
# self.estimator_context.set_input_shape("t", t.shape)
|
119 |
+
# self.estimator_context.set_input_shape("spks", spks.shape)
|
120 |
+
# self.estimator_context.set_input_shape("cond", cond.shape)
|
121 |
+
|
122 |
+
# # Create a list of bindings
|
123 |
+
# bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())]
|
124 |
+
|
125 |
+
# # Execute the inference
|
126 |
+
# self.estimator_context.execute_v2(bindings=bindings)
|
127 |
+
# return ret
|
128 |
else:
|
129 |
+
x_np = x.cpu().numpy()
|
130 |
+
mask_np = mask.cpu().numpy()
|
131 |
+
mu_np = mu.cpu().numpy()
|
132 |
+
t_np = t.cpu().numpy()
|
133 |
+
spks_np = spks.cpu().numpy()
|
134 |
+
cond_np = cond.cpu().numpy()
|
135 |
+
|
136 |
+
ort_inputs = {
|
137 |
+
'x': x_np,
|
138 |
+
'mask': mask_np,
|
139 |
+
'mu': mu_np,
|
140 |
+
't': t_np,
|
141 |
+
'spks': spks_np,
|
142 |
+
'cond': cond_np
|
143 |
+
}
|
144 |
+
|
145 |
+
output = self.session.run(None, ort_inputs)[0]
|
146 |
+
|
147 |
+
return torch.tensor(output, dtype=x.dtype, device=x.device)
|
148 |
+
|
|
|
149 |
|
150 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
151 |
"""Computes diffusion loss
|