File size: 4,560 Bytes
fadb220
2ce7240
fadb220
 
 
 
 
 
 
 
 
 
 
 
 
2ce7240
 
fadb220
 
2ce7240
fadb220
 
2ce7240
 
fadb220
2ce7240
90433f5
 
 
fadb220
 
 
2ce7240
 
 
 
 
 
 
 
fadb220
 
 
2ce7240
 
 
 
 
fadb220
 
 
 
90433f5
fadb220
 
2ce7240
 
fadb220
2ce7240
 
 
fadb220
 
2ce7240
 
fadb220
2ce7240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90433f5
 
2ce7240
 
 
 
 
 
 
 
 
 
 
 
 
 
fadb220
90433f5
fadb220
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import argparse
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
import os
import sys
import onnxruntime
import random
import torch
from tqdm import tqdm
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../..'.format(ROOT_DIR))
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
from cosyvoice.cli.cosyvoice import CosyVoice


def get_dummy_input(batch_size, seq_len, out_channels, device):
    x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
    mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
    mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
    t = torch.rand((batch_size), dtype=torch.float32, device=device)
    spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
    cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
    return x, mask, mu, t, spks, cond


def get_args():
    parser = argparse.ArgumentParser(description='export your model for deployment')
    parser.add_argument('--model_dir',
                        type=str,
                        default='pretrained_models/CosyVoice-300M',
                        help='local path')
    args = parser.parse_args()
    print(args)
    return args


def main():
    args = get_args()
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')

    cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False)

    # 1. export flow decoder estimator
    estimator = cosyvoice.model.flow.decoder.estimator

    device = cosyvoice.model.device
    batch_size, seq_len = 1, 256
    out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
    x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
    torch.onnx.export(
        estimator,
        (x, mask, mu, t, spks, cond),
        '{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
        export_params=True,
        opset_version=18,
        do_constant_folding=True,
        input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
        output_names=['estimator_out'],
        dynamic_axes={
            'x': {0: 'batch_size', 2: 'seq_len'},
            'mask': {0: 'batch_size', 2: 'seq_len'},
            'mu': {0: 'batch_size', 2: 'seq_len'},
            'cond': {0: 'batch_size', 2: 'seq_len'},
            't': {0: 'batch_size'},
            'spks': {0: 'batch_size'},
            'estimator_out': {0: 'batch_size', 2: 'seq_len'},
        }
    )

    # 2. test computation consistency
    option = onnxruntime.SessionOptions()
    option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
    option.intra_op_num_threads = 1
    providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
    estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
                                                  sess_options=option, providers=providers)

    for _ in tqdm(range(10)):
        x, mask, mu, t, spks, cond = get_dummy_input(random.randint(1, 6), random.randint(16, 512), out_channels, device)
        output_pytorch = estimator(x, mask, mu, t, spks, cond)
        ort_inputs = {
            'x': x.cpu().numpy(),
            'mask': mask.cpu().numpy(),
            'mu': mu.cpu().numpy(),
            't': t.cpu().numpy(),
            'spks': spks.cpu().numpy(),
            'cond': cond.cpu().numpy()
        }
        output_onnx = estimator_onnx.run(None, ort_inputs)[0]
        torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)


if __name__ == "__main__":
    main()