wheredahoesat / wav2lip /inference.py
Tacoswithhorchata's picture
Initial commit with essential files
14d3449
import numpy as np
import cv2
import os
import argparse
import subprocess
from tqdm import tqdm
import sys
import traceback
from .audio import load_wav, melspectrogram
from .face_detection import FaceAlignment, LandmarksType
import torch
import platform
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.',
default='wav2lip/results/result_voice.mp4')
parser.add_argument('--static', type=bool,
help='If True, then use only first video frame for inference', default=False)
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)',
default=25., required=False)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--face_det_batch_size', type=int,
help='Batch size for face detection', default=32)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=512)
parser.add_argument('--resize_factor', default=1, type=int,
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
parser.add_argument('--rotate', default=False, action='store_true',
help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.'
'Use if you get a flipped result, despite feeding a normal looking video')
parser.add_argument('--nosmooth', default=False, action='store_true',
help='Prevent smoothing face detections over a short temporal window')
args = parser.parse_args()
args.img_size = 96
# Check for available devices
if torch.backends.mps.is_available():
device = 'mps' # Use Apple Silicon GPU
elif torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
print('Using {} for inference.'.format(device))
def get_smoothened_boxes(boxes, idx):
"""Get smoothened box for a specific index"""
if idx >= len(boxes) or boxes[idx] is None:
return None, None
# Return the face region and coordinates
if isinstance(boxes[idx], list) and len(boxes[idx]) == 2: # Format from the specified bounding box
return boxes[idx][0], boxes[idx][1]
else: # Format from face detection - [x1, y1, x2, y2]
if isinstance(boxes[idx], list) or isinstance(boxes[idx], tuple):
if len(boxes[idx]) >= 4: # Make sure we have all 4 coordinates
x1, y1, x2, y2 = boxes[idx][:4]
# Return coordinates in the expected format (y1, y2, x1, x2)
coords = (y1, y2, x1, x2)
return None, coords
print(f"WARNING: Unexpected box format at idx {idx}: {boxes[idx]}")
return None, None
def face_detect(images):
print(f"Starting face detection using {device} device...")
try:
detector = FaceAlignment(LandmarksType._2D,
flip_input=False, device=device, verbose=True)
except Exception as e:
print(f"Error initializing face detector: {str(e)}")
print("Attempting to fall back to CPU for face detection...")
detector = FaceAlignment(LandmarksType._2D,
flip_input=False, device='cpu', verbose=True)
batch_size = args.face_det_batch_size
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
batch = np.array(images[i:i + batch_size])
print(f"Processing detection batch {i//batch_size + 1}, shape: {batch.shape}")
batch_predictions = detector.get_detections_for_batch(batch)
predictions.extend(batch_predictions)
except RuntimeError as e:
print(f"Runtime error in face detection: {str(e)}")
if batch_size == 1:
# Error when batch_size is already 1
print('Face detection failed at minimum batch size! Using fallback method...')
# Create empty predictions for all frames to allow processing to continue
predictions = [None] * len(images)
break
batch_size //= 2
print('Reducing face detection batch size to', batch_size)
continue
except Exception as e:
print(f"Unexpected error in face detection: {str(e)}")
# Create empty predictions and continue with fallback
predictions = [None] * len(images)
break
break
# Check if we have at least one valid face detection
faces_detected = sum(1 for p in predictions if p is not None)
print(f"Detected faces in {faces_detected} out of {len(images)} frames ({faces_detected/len(images)*100:.1f}%)")
results = []
pady1, pady2, padx1, padx2 = args.pads
for i, (rect, image) in enumerate(zip(predictions, images)):
if rect is None:
# Create default coordinates for face detection
h, w = image.shape[:2]
# Simple and consistent face region estimation based on center of the frame
center_x = w // 2
center_y = h // 2
# Use about 1/3 of the frame height for face
face_h = h // 3
face_w = min(w // 2, face_h)
# Create a centered box
x1 = max(0, center_x - face_w // 2 - padx1)
y1 = max(0, center_y - face_h // 2 - pady1)
x2 = min(w, center_x + face_w // 2 + padx2)
y2 = min(h, center_y + face_h // 2 + pady2)
if i == 0 or i % 100 == 0: # Log only occasionally to avoid flooding
print(f"Frame {i}: Using fallback face region at ({x1},{y1},{x2},{y2})")
results.append([x1, y1, x2, y2])
continue
# If face is detected, use its coordinates with padding
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
return results
def datagen(frames, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if args.box[0] == -1:
if not args.static:
try:
print(f"Starting face detection for {len(frames)} frames...")
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
print("Face detection completed successfully")
except Exception as e:
print(f"Face detection error: {str(e)}")
print(f"Error type: {type(e).__name__}")
traceback.print_exc()
print("Using fallback method with default face regions...")
# Create default face regions for all frames
h, w = frames[0].shape[:2]
# Simple face region estimation in the center of the frame
center_x = w // 2
center_y = h // 2
# Use about 1/3 of the frame height for face
face_h = h // 3
face_w = min(w // 2, face_h)
pady1, pady2, padx1, padx2 = args.pads
x1 = max(0, center_x - face_w // 2 - padx1)
y1 = max(0, center_y - face_h // 2 - pady1)
x2 = min(w, center_x + face_w // 2 + padx2)
y2 = min(h, center_y + face_h // 2 + pady2)
print(f"Estimated face region: x1={x1}, y1={y1}, x2={x2}, y2={y2}")
# Use the same format as the face_detect function returns
face_det_results = [[x1, y1, x2, y2] for _ in range(len(frames))]
else:
try:
print("Starting face detection for static image...")
face_det_results = face_detect([frames[0]])
print("Face detection completed successfully")
except Exception as e:
print(f"Face detection error: {str(e)}")
print(f"Error type: {type(e).__name__}")
traceback.print_exc()
print("Using fallback method with default face region...")
# Create default face region for static image
h, w = frames[0].shape[:2]
# Simple face region estimation in the center of the frame
center_x = w // 2
center_y = h // 2
# Use about 1/3 of the frame height for face
face_h = h // 3
face_w = min(w // 2, face_h)
pady1, pady2, padx1, padx2 = args.pads
x1 = max(0, center_x - face_w // 2 - padx1)
y1 = max(0, center_y - face_h // 2 - pady1)
x2 = min(w, center_x + face_w // 2 + padx2)
y2 = min(h, center_y + face_h // 2 + pady2)
print(f"Estimated face region for static image: x1={x1}, y1={y1}, x2={x2}, y2={y2}")
# Use the same format as the face_detect function returns
face_det_results = [[x1, y1, x2, y2]]
else:
print('Using the specified bounding box instead of face detection...')
y1, y2, x1, x2 = args.box
face_det_results = [[x1, y1, x2, y2] for _ in range(len(frames))]
for i, m in enumerate(mels):
idx = 0 if args.static else i%len(frames)
frame_to_save = frames[idx].copy()
if args.box[0] == -1:
face, coords = get_smoothened_boxes(face_det_results, idx)
if coords is None:
print(f'Face coordinates not detected! Skipping frame {i}')
continue
# If face is None, extract it from the frame using coordinates
if face is None:
y1, y2, x1, x2 = coords
try:
if y1 >= y2 or x1 >= x2:
print(f"Invalid coordinates at frame {i}: y1={y1}, y2={y2}, x1={x1}, x2={x2}")
continue
if y1 < 0 or x1 < 0 or y2 > frame_to_save.shape[0] or x2 > frame_to_save.shape[1]:
print(f"Out of bounds coordinates at frame {i}. Adjusting...")
y1 = max(0, y1)
x1 = max(0, x1)
y2 = min(frame_to_save.shape[0], y2)
x2 = min(frame_to_save.shape[1], x2)
# Check if the region is too small
if (y2 - y1) < 10 or (x2 - x1) < 10:
print(f"Region too small at frame {i}. Skipping.")
continue
face = frames[idx][y1:y2, x1:x2]
except Exception as e:
print(f"Error extracting face at frame {i}: {str(e)}")
continue
else:
face = frames[idx][y1:y2, x1:x2]
coords = (y1, y2, x1, x2)
try:
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
except Exception as e:
print(f"Error processing frame {i}: {str(e)}")
continue
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
mel_step_size = 16
def _load(checkpoint_path):
# Handle loading for different devices
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
return checkpoint
def main(face, audio, model, slow_mode=False):
if slow_mode:
print("Using SLOW animation mode (full face animation)")
else:
print("Using FAST animation mode (lips only)")
if not os.path.isfile(face):
raise ValueError('--face argument must be a valid path to video/image file')
elif face.split('.')[1] in ['jpg', 'png', 'jpeg'] and not slow_mode:
full_frames = [cv2.imread(face)]
fps = args.fps
else:
video_stream = cv2.VideoCapture(face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
# Get video dimensions for potential downscaling of large videos
frame_width = int(video_stream.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video_stream.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(video_stream.get(cv2.CAP_PROP_FRAME_COUNT))
# Auto-adjust resize factor for very large videos
original_resize_factor = args.resize_factor
if frame_width > 1920 or frame_height > 1080:
# For 4K or larger videos, use a higher resize factor
if frame_width >= 3840 or frame_height >= 2160:
args.resize_factor = max(4, args.resize_factor)
print(f"Auto-adjusting resize factor to {args.resize_factor} for high-resolution video")
# For 1080p-4K videos
elif frame_width > 1920 or frame_height > 1080:
args.resize_factor = max(2, args.resize_factor)
print(f"Auto-adjusting resize factor to {args.resize_factor} for high-resolution video")
print('Reading video frames...')
full_frames = []
# For large videos, report progress and limit memory usage
frame_limit = 5000 # Maximum number of frames to process at once
if total_frames > frame_limit:
print(f"Large video detected ({total_frames} frames). Will process in chunks.")
# Use tqdm for progress reporting
pbar = tqdm(total=min(total_frames, frame_limit))
frame_count = 0
while frame_count < frame_limit:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if args.resize_factor > 1:
frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor))
if args.rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = args.crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
frame_count += 1
pbar.update(1)
# For very large videos, limit frames to avoid memory issues
if frame_count >= frame_limit:
print(f"Reached frame limit of {frame_limit}. Processing this chunk.")
break
pbar.close()
# Reset resize factor to original value after processing
args.resize_factor = original_resize_factor
print ("Number of frames available for inference: "+str(len(full_frames)))
if not audio.endswith('.wav'):
print('Extracting raw audio...')
command = 'ffmpeg -y -i {} -strict -2 {}'.format(audio, 'temp/temp.wav')
subprocess.call(command, shell=True)
audio = 'temp/temp.wav'
wav = load_wav(audio, 16000)
mel = melspectrogram(wav)
print(mel.shape)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_chunks = []
mel_idx_multiplier = 80./fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("Length of mel chunks: {}".format(len(mel_chunks)))
full_frames = full_frames[:len(mel_chunks)]
batch_size = args.wav2lip_batch_size
gen = datagen(full_frames.copy(), mel_chunks)
# Initialize video writer outside the try block
out = None
try:
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
total=int(np.ceil(float(len(mel_chunks))/args.wav2lip_batch_size)))):
if i == 0:
#model = load_model(checkpoint_path)
print ("Model loaded")
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('wav2lip/temp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
out.write(f)
except Exception as e:
print(f"Error during processing: {str(e)}")
print("Attempting to save any completed frames...")
# Save the results - only if out was initialized
if out is not None:
out.release()
# Convert the output video to MP4 if needed - only if the AVI exists
result_path = 'wav2lip/results/result_voice.mp4'
if os.path.exists('wav2lip/temp/result.avi'):
# Check if the result file is valid (has frames)
avi_info = os.stat('wav2lip/temp/result.avi')
if avi_info.st_size > 1000: # If file is too small, it's likely empty
# Modified command to include the audio file
command = 'ffmpeg -y -i {} -i {} -c:v libx264 -preset ultrafast -c:a aac -map 0:v:0 -map 1:a:0 {}'.format(
'wav2lip/temp/result.avi', audio, result_path)
try:
subprocess.call(command, shell=True)
if os.path.exists(result_path):
print(f"Successfully created output video with audio at {result_path}")
else:
print(f"Error: Output video file was not created.")
except Exception as e:
print(f"Error during video conversion: {str(e)}")
else:
print(f"Warning: Output AVI file is too small ({avi_info.st_size} bytes). Face detection may have failed.")
else:
print("No output video was created. Face detection likely failed completely.")
# Return a default path even if no output was created
# Return even if there were errors
return result_path