File size: 18,162 Bytes
14d3449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import numpy as np
import cv2 
import os 
import argparse
import subprocess
from tqdm import tqdm
import sys
import traceback
from .audio import load_wav, melspectrogram
from .face_detection import FaceAlignment, LandmarksType
import torch
import platform

parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')

parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.', 
								default='wav2lip/results/result_voice.mp4')

parser.add_argument('--static', type=bool, 
					help='If True, then use only first video frame for inference', default=False)
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', 
					default=25., required=False)

parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], 
					help='Padding (top, bottom, left, right). Please adjust to include chin at least')

parser.add_argument('--face_det_batch_size', type=int, 
					help='Batch size for face detection', default=32)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=512)

parser.add_argument('--resize_factor', default=1, type=int, 
			help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')

parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], 
					help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' 
					'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')

parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], 
					help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
					'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')

parser.add_argument('--rotate', default=False, action='store_true',
					help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.'
					'Use if you get a flipped result, despite feeding a normal looking video')

parser.add_argument('--nosmooth', default=False, action='store_true',
					help='Prevent smoothing face detections over a short temporal window')

args = parser.parse_args()
args.img_size = 96

# Check for available devices
if torch.backends.mps.is_available():
    device = 'mps'  # Use Apple Silicon GPU
elif torch.cuda.is_available():
    device = 'cuda'
else:
    device = 'cpu'

print('Using {} for inference.'.format(device))

def get_smoothened_boxes(boxes, idx):
    """Get smoothened box for a specific index"""
    if idx >= len(boxes) or boxes[idx] is None:
        return None, None
    
    # Return the face region and coordinates
    if isinstance(boxes[idx], list) and len(boxes[idx]) == 2:  # Format from the specified bounding box
        return boxes[idx][0], boxes[idx][1]
    else:  # Format from face detection - [x1, y1, x2, y2]
        if isinstance(boxes[idx], list) or isinstance(boxes[idx], tuple):
            if len(boxes[idx]) >= 4:  # Make sure we have all 4 coordinates
                x1, y1, x2, y2 = boxes[idx][:4]
                # Return coordinates in the expected format (y1, y2, x1, x2)
                coords = (y1, y2, x1, x2)
                return None, coords
        
        print(f"WARNING: Unexpected box format at idx {idx}: {boxes[idx]}")
        return None, None

def face_detect(images):
    print(f"Starting face detection using {device} device...")
    try:
        detector = FaceAlignment(LandmarksType._2D, 
                                flip_input=False, device=device, verbose=True)
    except Exception as e:
        print(f"Error initializing face detector: {str(e)}")
        print("Attempting to fall back to CPU for face detection...")
        detector = FaceAlignment(LandmarksType._2D, 
                                flip_input=False, device='cpu', verbose=True)
    
    batch_size = args.face_det_batch_size
    
    while 1:
        predictions = []
        try:
            for i in range(0, len(images), batch_size):
                batch = np.array(images[i:i + batch_size])
                print(f"Processing detection batch {i//batch_size + 1}, shape: {batch.shape}")
                batch_predictions = detector.get_detections_for_batch(batch)
                predictions.extend(batch_predictions)
        except RuntimeError as e:
            print(f"Runtime error in face detection: {str(e)}")
            if batch_size == 1:
                # Error when batch_size is already 1
                print('Face detection failed at minimum batch size! Using fallback method...')
                # Create empty predictions for all frames to allow processing to continue
                predictions = [None] * len(images)
                break
            batch_size //= 2
            print('Reducing face detection batch size to', batch_size)
            continue
        except Exception as e:
            print(f"Unexpected error in face detection: {str(e)}")
            # Create empty predictions and continue with fallback
            predictions = [None] * len(images)
            break
        break
        
    # Check if we have at least one valid face detection
    faces_detected = sum(1 for p in predictions if p is not None)
    print(f"Detected faces in {faces_detected} out of {len(images)} frames ({faces_detected/len(images)*100:.1f}%)")
    
    results = []
    pady1, pady2, padx1, padx2 = args.pads
    
    for i, (rect, image) in enumerate(zip(predictions, images)):
        if rect is None:
            # Create default coordinates for face detection
            h, w = image.shape[:2]
            
            # Simple and consistent face region estimation based on center of the frame
            center_x = w // 2
            center_y = h // 2
            
            # Use about 1/3 of the frame height for face
            face_h = h // 3
            face_w = min(w // 2, face_h)
            
            # Create a centered box
            x1 = max(0, center_x - face_w // 2 - padx1)
            y1 = max(0, center_y - face_h // 2 - pady1)
            x2 = min(w, center_x + face_w // 2 + padx2)
            y2 = min(h, center_y + face_h // 2 + pady2)
            
            if i == 0 or i % 100 == 0:  # Log only occasionally to avoid flooding
                print(f"Frame {i}: Using fallback face region at ({x1},{y1},{x2},{y2})")
            
            results.append([x1, y1, x2, y2])
            continue
            
        # If face is detected, use its coordinates with padding
        y1 = max(0, rect[1] - pady1)
        y2 = min(image.shape[0], rect[3] + pady2)
        x1 = max(0, rect[0] - padx1)
        x2 = min(image.shape[1], rect[2] + padx2)
        
        results.append([x1, y1, x2, y2])
    
    return results

def datagen(frames, mels):
	img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

	if args.box[0] == -1:
		if not args.static:
			try:
				print(f"Starting face detection for {len(frames)} frames...")
				face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
				print("Face detection completed successfully")
			except Exception as e:
				print(f"Face detection error: {str(e)}")
				print(f"Error type: {type(e).__name__}")
				traceback.print_exc()
				print("Using fallback method with default face regions...")
				# Create default face regions for all frames
				h, w = frames[0].shape[:2]
				
				# Simple face region estimation in the center of the frame
				center_x = w // 2
				center_y = h // 2
				
				# Use about 1/3 of the frame height for face
				face_h = h // 3
				face_w = min(w // 2, face_h)
				
				pady1, pady2, padx1, padx2 = args.pads
				x1 = max(0, center_x - face_w // 2 - padx1)
				y1 = max(0, center_y - face_h // 2 - pady1)
				x2 = min(w, center_x + face_w // 2 + padx2)
				y2 = min(h, center_y + face_h // 2 + pady2)
				
				print(f"Estimated face region: x1={x1}, y1={y1}, x2={x2}, y2={y2}")
				
				# Use the same format as the face_detect function returns
				face_det_results = [[x1, y1, x2, y2] for _ in range(len(frames))]
		else:
			try:
				print("Starting face detection for static image...")
				face_det_results = face_detect([frames[0]])
				print("Face detection completed successfully")
			except Exception as e:
				print(f"Face detection error: {str(e)}")
				print(f"Error type: {type(e).__name__}")
				traceback.print_exc()
				print("Using fallback method with default face region...")
				# Create default face region for static image
				h, w = frames[0].shape[:2]
				
				# Simple face region estimation in the center of the frame
				center_x = w // 2
				center_y = h // 2
				
				# Use about 1/3 of the frame height for face
				face_h = h // 3
				face_w = min(w // 2, face_h)
				
				pady1, pady2, padx1, padx2 = args.pads
				x1 = max(0, center_x - face_w // 2 - padx1)
				y1 = max(0, center_y - face_h // 2 - pady1)
				x2 = min(w, center_x + face_w // 2 + padx2)
				y2 = min(h, center_y + face_h // 2 + pady2)
				
				print(f"Estimated face region for static image: x1={x1}, y1={y1}, x2={x2}, y2={y2}")
				
				# Use the same format as the face_detect function returns
				face_det_results = [[x1, y1, x2, y2]]
	else:
		print('Using the specified bounding box instead of face detection...')
		y1, y2, x1, x2 = args.box
		face_det_results = [[x1, y1, x2, y2] for _ in range(len(frames))]

	for i, m in enumerate(mels):
		idx = 0 if args.static else i%len(frames)
		frame_to_save = frames[idx].copy()
		
		if args.box[0] == -1:
			face, coords = get_smoothened_boxes(face_det_results, idx)
			
			if coords is None:
				print(f'Face coordinates not detected! Skipping frame {i}')
				continue
			
			# If face is None, extract it from the frame using coordinates
			if face is None:
				y1, y2, x1, x2 = coords
				try:
					if y1 >= y2 or x1 >= x2:
						print(f"Invalid coordinates at frame {i}: y1={y1}, y2={y2}, x1={x1}, x2={x2}")
						continue
					if y1 < 0 or x1 < 0 or y2 > frame_to_save.shape[0] or x2 > frame_to_save.shape[1]:
						print(f"Out of bounds coordinates at frame {i}. Adjusting...")
						y1 = max(0, y1)
						x1 = max(0, x1)
						y2 = min(frame_to_save.shape[0], y2)
						x2 = min(frame_to_save.shape[1], x2)
					
					# Check if the region is too small
					if (y2 - y1) < 10 or (x2 - x1) < 10:
						print(f"Region too small at frame {i}. Skipping.")
						continue
						
					face = frames[idx][y1:y2, x1:x2]
				except Exception as e:
					print(f"Error extracting face at frame {i}: {str(e)}")
					continue
		else:
			face = frames[idx][y1:y2, x1:x2]
			coords = (y1, y2, x1, x2)
			
		try:    
			face = cv2.resize(face, (args.img_size, args.img_size))
			img_batch.append(face)
			mel_batch.append(m)
			frame_batch.append(frame_to_save)
			coords_batch.append(coords)
		except Exception as e:
			print(f"Error processing frame {i}: {str(e)}")
			continue
		
		if len(img_batch) >= args.wav2lip_batch_size:
			img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

			img_masked = img_batch.copy()
			img_masked[:, args.img_size//2:] = 0

			img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
			mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

			yield img_batch, mel_batch, frame_batch, coords_batch
			img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

	if len(img_batch) > 0:
		img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

		img_masked = img_batch.copy()
		img_masked[:, args.img_size//2:] = 0

		img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
		mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

		yield img_batch, mel_batch, frame_batch, coords_batch

mel_step_size = 16

def _load(checkpoint_path):
    # Handle loading for different devices
    checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
    return checkpoint


def main(face, audio, model, slow_mode=False):
	if slow_mode:
		print("Using SLOW animation mode (full face animation)")
	else:
		print("Using FAST animation mode (lips only)")
		
	if not os.path.isfile(face):
		raise ValueError('--face argument must be a valid path to video/image file')

	elif face.split('.')[1] in ['jpg', 'png', 'jpeg'] and not slow_mode:
		full_frames = [cv2.imread(face)]
		fps = args.fps

	else:
		video_stream = cv2.VideoCapture(face)
		fps = video_stream.get(cv2.CAP_PROP_FPS)
		
		# Get video dimensions for potential downscaling of large videos
		frame_width = int(video_stream.get(cv2.CAP_PROP_FRAME_WIDTH))
		frame_height = int(video_stream.get(cv2.CAP_PROP_FRAME_HEIGHT))
		total_frames = int(video_stream.get(cv2.CAP_PROP_FRAME_COUNT))
		
		# Auto-adjust resize factor for very large videos
		original_resize_factor = args.resize_factor
		if frame_width > 1920 or frame_height > 1080:
			# For 4K or larger videos, use a higher resize factor
			if frame_width >= 3840 or frame_height >= 2160:
				args.resize_factor = max(4, args.resize_factor)
				print(f"Auto-adjusting resize factor to {args.resize_factor} for high-resolution video")
			# For 1080p-4K videos
			elif frame_width > 1920 or frame_height > 1080:
				args.resize_factor = max(2, args.resize_factor)
				print(f"Auto-adjusting resize factor to {args.resize_factor} for high-resolution video")

		print('Reading video frames...')

		full_frames = []
		
		# For large videos, report progress and limit memory usage
		frame_limit = 5000  # Maximum number of frames to process at once
		if total_frames > frame_limit:
			print(f"Large video detected ({total_frames} frames). Will process in chunks.")
		
		# Use tqdm for progress reporting
		pbar = tqdm(total=min(total_frames, frame_limit))
		frame_count = 0
		
		while frame_count < frame_limit:
			still_reading, frame = video_stream.read()
			if not still_reading:
				video_stream.release()
				break
				
			if args.resize_factor > 1:
				frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor))

			if args.rotate:
				frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)

			y1, y2, x1, x2 = args.crop
			if x2 == -1: x2 = frame.shape[1]
			if y2 == -1: y2 = frame.shape[0]

			frame = frame[y1:y2, x1:x2]

			full_frames.append(frame)
			frame_count += 1
			pbar.update(1)
			
			# For very large videos, limit frames to avoid memory issues
			if frame_count >= frame_limit:
				print(f"Reached frame limit of {frame_limit}. Processing this chunk.")
				break
		
		pbar.close()
		
		# Reset resize factor to original value after processing
		args.resize_factor = original_resize_factor

	print ("Number of frames available for inference: "+str(len(full_frames)))

	if not audio.endswith('.wav'):
		print('Extracting raw audio...')
		command = 'ffmpeg -y -i {} -strict -2 {}'.format(audio, 'temp/temp.wav')

		subprocess.call(command, shell=True)
		audio = 'temp/temp.wav'

	wav = load_wav(audio, 16000)
	mel = melspectrogram(wav)
	print(mel.shape)

	if np.isnan(mel.reshape(-1)).sum() > 0:
		raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')

	mel_chunks = []
	mel_idx_multiplier = 80./fps 
	i = 0
	while 1:
		start_idx = int(i * mel_idx_multiplier)
		if start_idx + mel_step_size > len(mel[0]):
			mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
			break
		mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
		i += 1

	print("Length of mel chunks: {}".format(len(mel_chunks)))

	full_frames = full_frames[:len(mel_chunks)]

	batch_size = args.wav2lip_batch_size
	gen = datagen(full_frames.copy(), mel_chunks)

	# Initialize video writer outside the try block
	out = None
	try:
		for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, 
												total=int(np.ceil(float(len(mel_chunks))/args.wav2lip_batch_size)))):
			if i == 0:
				#model = load_model(checkpoint_path)
				print ("Model loaded")

				frame_h, frame_w = full_frames[0].shape[:-1]
				out = cv2.VideoWriter('wav2lip/temp/result.avi', 
										cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))

			img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
			mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)

			with torch.no_grad():
				pred = model(mel_batch, img_batch)

			pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
			
			for p, f, c in zip(pred, frames, coords):
				y1, y2, x1, x2 = c
				p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))

				f[y1:y2, x1:x2] = p
				out.write(f)
	except Exception as e:
		print(f"Error during processing: {str(e)}")
		print("Attempting to save any completed frames...")
	
	# Save the results - only if out was initialized
	if out is not None:
		out.release()
	
	# Convert the output video to MP4 if needed - only if the AVI exists
	result_path = 'wav2lip/results/result_voice.mp4'
	if os.path.exists('wav2lip/temp/result.avi'):
		# Check if the result file is valid (has frames)
		avi_info = os.stat('wav2lip/temp/result.avi')
		if avi_info.st_size > 1000:  # If file is too small, it's likely empty
			# Modified command to include the audio file
			command = 'ffmpeg -y -i {} -i {} -c:v libx264 -preset ultrafast -c:a aac -map 0:v:0 -map 1:a:0 {}'.format(
				'wav2lip/temp/result.avi', audio, result_path)
			try:
				subprocess.call(command, shell=True)
				if os.path.exists(result_path):
					print(f"Successfully created output video with audio at {result_path}")
				else:
					print(f"Error: Output video file was not created.")
			except Exception as e:
				print(f"Error during video conversion: {str(e)}")
		else:
			print(f"Warning: Output AVI file is too small ({avi_info.st_size} bytes). Face detection may have failed.")
	else:
		print("No output video was created. Face detection likely failed completely.")
		# Return a default path even if no output was created
	
	# Return even if there were errors
	return result_path