File size: 39,339 Bytes
4aa5114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfc135c
 
4aa5114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfc135c
 
4aa5114
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
import torch
import torch.nn as nn

import numpy as np

from torch.nn.functional import silu

from einops import rearrange

from utils.general_utils import quaternion_raw_multiply
from utils.graphics_utils import fov2focal

# U-Net implementation from EDM
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/

"""Model architectures and preconditioning schemes used in the paper
"Elucidating the Design Space of Diffusion-Based Generative Models"."""

#----------------------------------------------------------------------------
# Unified routine for initializing weights and biases.

def weight_init(shape, mode, fan_in, fan_out):
    if mode == 'xavier_uniform': return np.sqrt(6 / (fan_in + fan_out)) * (torch.rand(*shape) * 2 - 1)
    if mode == 'xavier_normal':  return np.sqrt(2 / (fan_in + fan_out)) * torch.randn(*shape)
    if mode == 'kaiming_uniform': return np.sqrt(3 / fan_in) * (torch.rand(*shape) * 2 - 1)
    if mode == 'kaiming_normal':  return np.sqrt(1 / fan_in) * torch.randn(*shape)
    raise ValueError(f'Invalid init mode "{mode}"')

#----------------------------------------------------------------------------
# Fully-connected layer.

class Linear(torch.nn.Module):
    def __init__(self, in_features, out_features, bias=True, init_mode='kaiming_normal', init_weight=1, init_bias=0):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        init_kwargs = dict(mode=init_mode, fan_in=in_features, fan_out=out_features)
        self.weight = torch.nn.Parameter(weight_init([out_features, in_features], **init_kwargs) * init_weight)
        self.bias = torch.nn.Parameter(weight_init([out_features], **init_kwargs) * init_bias) if bias else None

    def forward(self, x):
        x = x @ self.weight.to(x.dtype).t()
        if self.bias is not None:
            x = x.add_(self.bias.to(x.dtype))
        return x

#----------------------------------------------------------------------------
# Convolutional layer with optional up/downsampling.

class Conv2d(torch.nn.Module):
    def __init__(self,
        in_channels, out_channels, kernel, bias=True, up=False, down=False,
        resample_filter=[1,1], fused_resample=False, init_mode='kaiming_normal', init_weight=1, init_bias=0,
    ):
        assert not (up and down)
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.up = up
        self.down = down
        self.fused_resample = fused_resample
        init_kwargs = dict(mode=init_mode, fan_in=in_channels*kernel*kernel, fan_out=out_channels*kernel*kernel)
        self.weight = torch.nn.Parameter(weight_init([out_channels, in_channels, kernel, kernel], **init_kwargs) * init_weight) if kernel else None
        self.bias = torch.nn.Parameter(weight_init([out_channels], **init_kwargs) * init_bias) if kernel and bias else None
        f = torch.as_tensor(resample_filter, dtype=torch.float32)
        f = f.ger(f).unsqueeze(0).unsqueeze(1) / f.sum().square()
        self.register_buffer('resample_filter', f if up or down else None)

    def forward(self, x, N_views_xa=1):
        w = self.weight.to(x.dtype) if self.weight is not None else None
        b = self.bias.to(x.dtype) if self.bias is not None else None
        f = self.resample_filter.to(x.dtype) if self.resample_filter is not None else None
        w_pad = w.shape[-1] // 2 if w is not None else 0
        f_pad = (f.shape[-1] - 1) // 2 if f is not None else 0

        if self.fused_resample and self.up and w is not None:
            x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=max(f_pad - w_pad, 0))
            x = torch.nn.functional.conv2d(x, w, padding=max(w_pad - f_pad, 0))
        elif self.fused_resample and self.down and w is not None:
            x = torch.nn.functional.conv2d(x, w, padding=w_pad+f_pad)
            x = torch.nn.functional.conv2d(x, f.tile([self.out_channels, 1, 1, 1]), groups=self.out_channels, stride=2)
        else:
            if self.up:
                x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad)
            if self.down:
                x = torch.nn.functional.conv2d(x, f.tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad)
            if w is not None:
                x = torch.nn.functional.conv2d(x, w, padding=w_pad)
        if b is not None:
            x = x.add_(b.reshape(1, -1, 1, 1))
        return x

#----------------------------------------------------------------------------
# Group normalization.

class GroupNorm(torch.nn.Module):
    def __init__(self, num_channels, num_groups=32, min_channels_per_group=4, eps=1e-5):
        super().__init__()
        self.num_groups = min(num_groups, num_channels // min_channels_per_group)
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.ones(num_channels))
        self.bias = torch.nn.Parameter(torch.zeros(num_channels))

    def forward(self, x, N_views_xa=1):
        x = torch.nn.functional.group_norm(x, num_groups=self.num_groups, weight=self.weight.to(x.dtype), bias=self.bias.to(x.dtype), eps=self.eps)
        return x.to(memory_format=torch.channels_last)

#----------------------------------------------------------------------------
# Attention weight computation, i.e., softmax(Q^T * K).
# Performs all computation using FP32, but uses the original datatype for
# inputs/outputs/gradients to conserve memory.

class AttentionOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, q, k):
        w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype)
        ctx.save_for_backward(q, k, w)
        return w

    @staticmethod
    def backward(ctx, dw):
        q, k, w = ctx.saved_tensors
        db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32)
        dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype) / np.sqrt(k.shape[1])
        dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype) / np.sqrt(k.shape[1])
        return dq, dk

#----------------------------------------------------------------------------
# Timestep embedding used in the DDPM++ and ADM architectures.

class PositionalEmbedding(torch.nn.Module):
    def __init__(self, num_channels, max_positions=10000, endpoint=False):
        super().__init__()
        self.num_channels = num_channels
        self.max_positions = max_positions
        self.endpoint = endpoint

    def forward(self, x):
        b, c = x.shape
        x = rearrange(x, 'b c -> (b c)')
        freqs = torch.arange(start=0, end=self.num_channels//2, dtype=torch.float32, device=x.device)
        freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0))
        freqs = (1 / self.max_positions) ** freqs
        x = x.ger(freqs.to(x.dtype))
        x = torch.cat([x.cos(), x.sin()], dim=1)
        x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b)
        return x

#----------------------------------------------------------------------------
# Timestep embedding used in the NCSN++ architecture.

class FourierEmbedding(torch.nn.Module):
    def __init__(self, num_channels, scale=16):
        super().__init__()
        self.register_buffer('freqs', torch.randn(num_channels // 2) * scale)

    def forward(self, x):
        b, c = x.shape
        x = rearrange(x, 'b c -> (b c)')
        x = x.ger((2 * np.pi * self.freqs).to(x.dtype))
        x = torch.cat([x.cos(), x.sin()], dim=1)
        x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b)
        return x

class CrossAttentionBlock(torch.nn.Module):
    def __init__(self, num_channels, num_heads = 1, eps=1e-5):
        super().__init__()

        self.num_heads = 1
        init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2))
        init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5)

        self.norm = GroupNorm(num_channels=num_channels, eps=eps)

        self.q_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=1, **init_attn)
        self.kv_proj = Conv2d(in_channels=num_channels, out_channels=num_channels*2, kernel=1, **init_attn)

        self.out_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=3, **init_zero)

    def forward(self, q, kv):
        q_proj = self.q_proj(self.norm(q)).reshape(q.shape[0] * self.num_heads, q.shape[1] // self.num_heads, -1)
        k_proj, v_proj = self.kv_proj(self.norm(kv)).reshape(kv.shape[0] * self.num_heads, 
                                                   kv.shape[1] // self.num_heads, 2, -1).unbind(2)
        w = AttentionOp.apply(q_proj, k_proj)
        a = torch.einsum('nqk,nck->ncq', w, v_proj)
        x = self.out_proj(a.reshape(*q.shape)).add_(q)

        return x

#----------------------------------------------------------------------------
# Unified U-Net block with optional up/downsampling and self-attention.
# Represents the union of all features employed by the DDPM++, NCSN++, and
# ADM architectures.

class UNetBlock(torch.nn.Module):
    def __init__(self,
        in_channels, out_channels, emb_channels, up=False, down=False, attention=False,
        num_heads=None, channels_per_head=64, dropout=0, skip_scale=1, eps=1e-5,
        resample_filter=[1,1], resample_proj=False, adaptive_scale=True,
        init=dict(), init_zero=dict(init_weight=0), init_attn=None,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        if emb_channels is not None:
            self.affine = Linear(in_features=emb_channels, out_features=out_channels*(2 if adaptive_scale else 1), **init)
        self.num_heads = 0 if not attention else num_heads if num_heads is not None else out_channels // channels_per_head
        self.dropout = dropout
        self.skip_scale = skip_scale
        self.adaptive_scale = adaptive_scale

        self.norm0 = GroupNorm(num_channels=in_channels, eps=eps)
        self.conv0 = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=3, up=up, down=down, resample_filter=resample_filter, **init)
        self.norm1 = GroupNorm(num_channels=out_channels, eps=eps)
        self.conv1 = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=3, **init_zero)

        self.skip = None
        if out_channels != in_channels or up or down:
            kernel = 1 if resample_proj or out_channels!= in_channels else 0
            self.skip = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=kernel, up=up, down=down, resample_filter=resample_filter, **init)

        if self.num_heads:
            self.norm2 = GroupNorm(num_channels=out_channels, eps=eps)
            self.qkv = Conv2d(in_channels=out_channels, out_channels=out_channels*3, kernel=1, **(init_attn if init_attn is not None else init))
            self.proj = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=1, **init_zero)

    def forward(self, x, emb=None, N_views_xa=1):
        orig = x
        x = self.conv0(silu(self.norm0(x)))

        if emb is not None:
            params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype)
            if self.adaptive_scale:
                scale, shift = params.chunk(chunks=2, dim=1)
                x = silu(torch.addcmul(shift, self.norm1(x), scale + 1))
            else:
                x = silu(self.norm1(x.add_(params)))

        x = silu(self.norm1(x))

        x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training))
        x = x.add_(self.skip(orig) if self.skip is not None else orig)
        x = x * self.skip_scale

        if self.num_heads:
            if N_views_xa != 1:
                B, C, H, W = x.shape
                # (B, C, H, W) -> (B/N, N, C, H, W) -> (B/N, N, H, W, C)
                x = x.reshape(B // N_views_xa, N_views_xa, *x.shape[1:]).permute(0, 1, 3, 4, 2)
                # (B/N, N, H, W, C) -> (B/N, N*H, W, C) -> (B/N, C, N*H, W)
                x = x.reshape(B // N_views_xa, N_views_xa * x.shape[2], *x.shape[3:]).permute(0, 3, 1, 2)
            q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2)
            w = AttentionOp.apply(q, k)
            a = torch.einsum('nqk,nck->ncq', w, v)
            x = self.proj(a.reshape(*x.shape)).add_(x)
            x = x * self.skip_scale
            if N_views_xa != 1:
                # (B/N, C, N*H, W) -> (B/N, N*H, W, C)
                x = x.permute(0, 2, 3, 1)
                # (B/N, N*H, W, C) -> (B/N, N, H, W, C) -> (B/N, N, C, H, W)
                x = x.reshape(B // N_views_xa, N_views_xa, H, W, C).permute(0, 1, 4, 2, 3)
                # (B/N, N, C, H, W) -> # (B, C, H, W) 
                x = x.reshape(B, C, H, W)
        return x

#----------------------------------------------------------------------------
# Reimplementation of the DDPM++ and NCSN++ architectures from the paper
# "Score-Based Generative Modeling through Stochastic Differential
# Equations". Equivalent to the original implementation by Song et al.,
# available at https://github.com/yang-song/score_sde_pytorch
# taken from EDM repository https://github.com/NVlabs/edm/blob/main/training/networks.py#L372

class SongUNet(nn.Module):
    def __init__(self,
        img_resolution,                     # Image resolution at input/output.
        in_channels,                        # Number of color channels at input.
        out_channels,                       # Number of color channels at output.
        emb_dim_in           = 0,            # Input embedding dim.
        augment_dim         = 0,            # Augmentation label dimensionality, 0 = no augmentation.

        model_channels      = 128,          # Base multiplier for the number of channels.
        channel_mult        = [1,2,2,2],    # Per-resolution multipliers for the number of channels.
        channel_mult_emb    = 4,            # Multiplier for the dimensionality of the embedding vector.
        num_blocks          = 4,            # Number of residual blocks per resolution.
        attn_resolutions    = [16],         # List of resolutions with self-attention.
        dropout             = 0.10,         # Dropout probability of intermediate activations.
        label_dropout       = 0,            # Dropout probability of class labels for classifier-free guidance.

        embedding_type      = 'positional', # Timestep embedding type: 'positional' for DDPM++, 'fourier' for NCSN++.
        channel_mult_noise  = 0,            # Timestep embedding size: 1 for DDPM++, 2 for NCSN++.
        encoder_type        = 'standard',   # Encoder architecture: 'standard' for DDPM++, 'residual' for NCSN++.
        decoder_type        = 'standard',   # Decoder architecture: 'standard' for both DDPM++ and NCSN++.
        resample_filter     = [1,1],        # Resampling filter: [1,1] for DDPM++, [1,3,3,1] for NCSN++.
    ):
        assert embedding_type in ['fourier', 'positional']
        assert encoder_type in ['standard', 'skip', 'residual']
        assert decoder_type in ['standard', 'skip']

        super().__init__()
        self.label_dropout = label_dropout
        self.emb_dim_in = emb_dim_in
        if emb_dim_in > 0:
            emb_channels = model_channels * channel_mult_emb
        else:
            emb_channels = None
        noise_channels = model_channels * channel_mult_noise
        init = dict(init_mode='xavier_uniform')
        init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5)
        init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2))
        block_kwargs = dict(
            emb_channels=emb_channels, num_heads=1, dropout=dropout, skip_scale=np.sqrt(0.5), eps=1e-6,
            resample_filter=resample_filter, resample_proj=True, adaptive_scale=False,
            init=init, init_zero=init_zero, init_attn=init_attn,
        )

        # Mapping.
        # self.map_label = Linear(in_features=label_dim, out_features=noise_channels, **init) if label_dim else None
        # self.map_augment = Linear(in_features=augment_dim, out_features=noise_channels, bias=False, **init) if augment_dim else None
        # self.map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init)
        # self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)
        if emb_dim_in > 0:
            self.map_layer0 = Linear(in_features=emb_dim_in, out_features=emb_channels, **init)
            self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)

        if noise_channels > 0:
            self.noise_map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init)
            self.noise_map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)

        # Encoder.
        self.enc = torch.nn.ModuleDict()
        cout = in_channels
        caux = in_channels
        for level, mult in enumerate(channel_mult):
            res = img_resolution >> level
            if level == 0:
                cin = cout
                cout = model_channels
                self.enc[f'{res}x{res}_conv'] = Conv2d(in_channels=cin, out_channels=cout, kernel=3, **init)
            else:
                self.enc[f'{res}x{res}_down'] = UNetBlock(in_channels=cout, out_channels=cout, down=True, **block_kwargs)
                if encoder_type == 'skip':
                    self.enc[f'{res}x{res}_aux_down'] = Conv2d(in_channels=caux, out_channels=caux, kernel=0, down=True, resample_filter=resample_filter)
                    self.enc[f'{res}x{res}_aux_skip'] = Conv2d(in_channels=caux, out_channels=cout, kernel=1, **init)
                if encoder_type == 'residual':
                    self.enc[f'{res}x{res}_aux_residual'] = Conv2d(in_channels=caux, out_channels=cout, kernel=3, down=True, resample_filter=resample_filter, fused_resample=True, **init)
                    caux = cout
            for idx in range(num_blocks):
                cin = cout
                cout = model_channels * mult
                attn = (res in attn_resolutions)
                self.enc[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs)
        skips = [block.out_channels for name, block in self.enc.items() if 'aux' not in name]

        # Decoder.
        self.dec = torch.nn.ModuleDict()
        for level, mult in reversed(list(enumerate(channel_mult))):
            res = img_resolution >> level
            if level == len(channel_mult) - 1:
                self.dec[f'{res}x{res}_in0'] = UNetBlock(in_channels=cout, out_channels=cout, attention=True, **block_kwargs)
                self.dec[f'{res}x{res}_in1'] = UNetBlock(in_channels=cout, out_channels=cout, **block_kwargs)
            else:
                self.dec[f'{res}x{res}_up'] = UNetBlock(in_channels=cout, out_channels=cout, up=True, **block_kwargs)
            for idx in range(num_blocks + 1):
                cin = cout + skips.pop()
                cout = model_channels * mult
                attn = (idx == num_blocks and res in attn_resolutions)
                self.dec[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs)
            if decoder_type == 'skip' or level == 0:
                if decoder_type == 'skip' and level < len(channel_mult) - 1:
                    self.dec[f'{res}x{res}_aux_up'] = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=0, up=True, resample_filter=resample_filter)
                self.dec[f'{res}x{res}_aux_norm'] = GroupNorm(num_channels=cout, eps=1e-6)
                self.dec[f'{res}x{res}_aux_conv'] = Conv2d(in_channels=cout, out_channels=out_channels, kernel=3, init_weight=0.2, **init)# init_zero)

    def forward(self, x, film_camera_emb=None, N_views_xa=1):

        emb = None

        if film_camera_emb is not None:
            if self.emb_dim_in != 1:
                film_camera_emb = film_camera_emb.reshape(
                    film_camera_emb.shape[0], 2, -1).flip(1).reshape(*film_camera_emb.shape) # swap sin/cos
            film_camera_emb = silu(self.map_layer0(film_camera_emb))
            film_camera_emb = silu(self.map_layer1(film_camera_emb))
            emb = film_camera_emb

        # Encoder.
        skips = []
        aux = x
        for name, block in self.enc.items():
            if 'aux_down' in name:
                aux = block(aux, N_views_xa)
            elif 'aux_skip' in name:
                x = skips[-1] = x + block(aux, N_views_xa)
            elif 'aux_residual' in name:
                x = skips[-1] = aux = (x + block(aux, N_views_xa)) / np.sqrt(2)
            else:
                x = block(x, emb=emb, N_views_xa=N_views_xa) if isinstance(block, UNetBlock) \
                    else block(x, N_views_xa=N_views_xa)
                skips.append(x)

        # Decoder.
        aux = None
        tmp = None
        for name, block in self.dec.items():
            if 'aux_up' in name:
                aux = block(aux, N_views_xa)
            elif 'aux_norm' in name:
                tmp = block(x, N_views_xa)
            elif 'aux_conv' in name:
                tmp = block(silu(tmp), N_views_xa)
                aux = tmp if aux is None else tmp + aux
            else:
                if x.shape[1] != block.in_channels:
                    # skip connection is pixel-aligned which is good for
                    # foreground features
                    # but it's not good for gradient flow and background features
                    x = torch.cat([x, skips.pop()], dim=1)
                x = block(x, emb=emb, N_views_xa=N_views_xa)
        return aux

class SingleImageSongUNetPredictor(nn.Module):
    def __init__(self, cfg, out_channels, bias, scale):
        super(SingleImageSongUNetPredictor, self).__init__()
        self.out_channels = out_channels
        self.cfg = cfg
        if cfg.cam_embd.embedding is None:
            in_channels = 3
            emb_dim_in = 0
        else:
            in_channels = 3
            emb_dim_in = 6 * cfg.cam_embd.dimension

        self.encoder = SongUNet(cfg.data.training_resolution, 
                                in_channels, 
                                sum(out_channels),
                                model_channels=cfg.model.base_dim,
                                num_blocks=cfg.model.num_blocks,
                                emb_dim_in=emb_dim_in,
                                channel_mult_noise=0,
                                attn_resolutions=cfg.model.attention_resolutions)
        self.out = nn.Conv2d(in_channels=sum(out_channels), 
                                 out_channels=sum(out_channels),
                                 kernel_size=1)

        start_channels = 0
        for out_channel, b, s in zip(out_channels, bias, scale):
            nn.init.xavier_uniform_(
                self.out.weight[start_channels:start_channels+out_channel,
                                :, :, :], s)
            nn.init.constant_(
                self.out.bias[start_channels:start_channels+out_channel], b)
            start_channels += out_channel

    def forward(self, x, film_camera_emb=None, N_views_xa=1):
        x = self.encoder(x, 
                         film_camera_emb=film_camera_emb,
                         N_views_xa=N_views_xa)

        return self.out(x)

def networkCallBack(cfg, name, out_channels, **kwargs):
    assert name == "SingleUNet"
    return SingleImageSongUNetPredictor(cfg, out_channels, **kwargs)

class GaussianSplatPredictor(nn.Module):
    def __init__(self, cfg):
        super(GaussianSplatPredictor, self).__init__()
        self.cfg = cfg
        assert cfg.model.network_with_offset or cfg.model.network_without_offset, \
            "Need at least one network"

        if cfg.model.network_with_offset:
            split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(True, cfg)
            self.network_with_offset = networkCallBack(cfg, 
                                        cfg.model.name,
                                        split_dimensions,
                                        scale = scale_inits,
                                        bias = bias_inits)
            assert not cfg.model.network_without_offset, "Can only have one network"
        if cfg.model.network_without_offset:
            split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(False, cfg)
            self.network_wo_offset = networkCallBack(cfg, 
                                        cfg.model.name,
                                        split_dimensions,
                                        scale = scale_inits,
                                        bias = bias_inits)
            assert not cfg.model.network_with_offset, "Can only have one network"

        self.init_ray_dirs()

        # Activation functions for different parameters
        self.depth_act = nn.Sigmoid()
        self.scaling_activation = torch.exp
        self.opacity_activation = torch.sigmoid
        self.rotation_activation = torch.nn.functional.normalize

        if self.cfg.model.max_sh_degree > 0:
            self.init_sh_transform_matrices()

        if self.cfg.cam_embd.embedding is not None:
            if self.cfg.cam_embd.encode_embedding is None:
                self.cam_embedding_map = nn.Identity()
            elif self.cfg.cam_embd.encode_embedding == "positional":
                self.cam_embedding_map = PositionalEmbedding(self.cfg.cam_embd.dimension)

    def init_sh_transform_matrices(self):
        v_to_sh_transform = torch.tensor([[ 0, 0,-1],
                                          [-1, 0, 0],
                                          [ 0, 1, 0]], dtype=torch.float32)
        sh_to_v_transform = v_to_sh_transform.transpose(0, 1)
        self.register_buffer('sh_to_v_transform', sh_to_v_transform.unsqueeze(0))
        self.register_buffer('v_to_sh_transform', v_to_sh_transform.unsqueeze(0))

    def init_ray_dirs(self):
        x = torch.linspace(-self.cfg.data.training_resolution // 2 + 0.5, 
                            self.cfg.data.training_resolution // 2 - 0.5, 
                            self.cfg.data.training_resolution) 
        y = torch.linspace( self.cfg.data.training_resolution // 2 - 0.5, 
                           -self.cfg.data.training_resolution // 2 + 0.5, 
                            self.cfg.data.training_resolution)
        if self.cfg.model.inverted_x:
            x = -x
        if self.cfg.model.inverted_y:
            y = -y
        grid_x, grid_y = torch.meshgrid(x, y, indexing='xy')
        ones = torch.ones_like(grid_x, dtype=grid_x.dtype)
        ray_dirs = torch.stack([grid_x, grid_y, ones]).unsqueeze(0)

        # for cars and chairs the focal length is fixed across dataset
        # so we can preprocess it
        # for co3d this is done on the fly
        if self.cfg.data.category not in ["hydrants", "teddybears"]:
            ray_dirs[:, :2, ...] /= fov2focal(self.cfg.data.fov * np.pi / 180, 
                                              self.cfg.data.training_resolution)
        self.register_buffer('ray_dirs', ray_dirs)

    def get_splits_and_inits(self, with_offset, cfg):
        # Gets channel split dimensions and last layer initialisation
        split_dimensions = []
        scale_inits = []
        bias_inits = []

        if with_offset:
            split_dimensions = split_dimensions + [1, 3, 1, 3, 4, 3]
            scale_inits = scale_inits + [cfg.model.depth_scale, 
                           cfg.model.xyz_scale, 
                           cfg.model.opacity_scale, 
                           cfg.model.scale_scale,
                           1.0,
                           5.0]
            bias_inits = [cfg.model.depth_bias,
                          cfg.model.xyz_bias, 
                          cfg.model.opacity_bias,
                          np.log(cfg.model.scale_bias),
                          0.0,
                          0.0]
        else:
            split_dimensions = split_dimensions + [1, 1, 3, 4, 3]
            scale_inits = scale_inits + [cfg.model.depth_scale, 
                           cfg.model.opacity_scale, 
                           cfg.model.scale_scale,
                           1.0,
                           5.0]
            bias_inits = bias_inits + [cfg.model.depth_bias,
                          cfg.model.opacity_bias,
                          np.log(cfg.model.scale_bias),
                          0.0,
                          0.0]

        if cfg.model.max_sh_degree != 0:
            sh_num = (self.cfg.model.max_sh_degree + 1) ** 2 - 1
            sh_num_rgb = sh_num * 3
            split_dimensions.append(sh_num_rgb)
            scale_inits.append(0.0)
            bias_inits.append(0.0)

        if with_offset:
            self.split_dimensions_with_offset = split_dimensions
        else:
            self.split_dimensions_without_offset = split_dimensions

        return split_dimensions, scale_inits, bias_inits

    def flatten_vector(self, x):
        # Gets rid of the image dimensions and flattens to a point list
        # B x C x H x W -> B x C x N -> B x N x C
        return x.reshape(x.shape[0], x.shape[1], -1).permute(0, 2, 1)

    def make_contiguous(self, tensor_dict):
        return {k: v.contiguous() for k, v in tensor_dict.items()}

    def multi_view_union(self, tensor_dict, B, N_view):
        for t_name, t in tensor_dict.items():
            t = t.reshape(B, N_view, *t.shape[1:])
            tensor_dict[t_name] = t.reshape(B, N_view * t.shape[2], *t.shape[3:])
        return tensor_dict

    def get_camera_embeddings(self, cameras):
        # get embedding
        # pass through encoding
        b, n_view = cameras.shape[:2]
        if self.cfg.cam_embd.embedding == "index":
            cam_embedding = torch.arange(n_view, 
                                     dtype=cameras.dtype,
                                     device=cameras.device,
                                     ).unsqueeze(0).expand(b, n_view).unsqueeze(2)
        if self.cfg.cam_embd.embedding == "pose":
            # concatenate origin and z-vector. cameras are in row-major order
            cam_embedding = torch.cat([cameras[:, :, 3, :3], cameras[:, :, 2, :3]], dim=2)

        cam_embedding = rearrange(cam_embedding, 'b n_view c -> (b n_view) c')
        cam_embedding = self.cam_embedding_map(cam_embedding)
        cam_embedding = rearrange(cam_embedding, '(b n_view) c -> b n_view c', b=b, n_view=n_view)

        return cam_embedding

    def transform_SHs(self, shs, source_cameras_to_world):
        # shs: B x N x SH_num x 3
        # source_cameras_to_world: B 4 4
        assert shs.shape[2] == 3, "Can only process shs order 1"
        shs = rearrange(shs, 'b n sh_num rgb -> b (n rgb) sh_num')
        transforms = torch.bmm(
            self.sh_to_v_transform.expand(source_cameras_to_world.shape[0], 3, 3),
            # transpose is because source_cameras_to_world is
            # in row major order 
            source_cameras_to_world[:, :3, :3])
        transforms = torch.bmm(transforms, 
            self.v_to_sh_transform.expand(source_cameras_to_world.shape[0], 3, 3))
        
        shs_transformed = torch.bmm(shs, transforms)
        shs_transformed = rearrange(shs_transformed, 'b (n rgb) sh_num -> b n sh_num rgb', rgb=3)

        return shs_transformed

    def transform_rotations(self, rotations, source_cv2wT_quat):
        """
        Applies a transform that rotates the predicted rotations from 
        camera space to world space.
        Args:
            rotations: predicted in-camera rotation quaternions (B x N x 4)
            source_cameras_to_world: transformation quaternions from 
                camera-to-world matrices transposed(B x 4)
        Retures:
            rotations with appropriately applied transform to world space
        """

        Mq = source_cv2wT_quat.unsqueeze(1).expand(*rotations.shape)

        rotations = quaternion_raw_multiply(Mq, rotations) 
        
        return rotations

    def get_pos_from_network_output(self, depth_network, offset, focals_pixels, const_offset=None):

        # expands ray dirs along the batch dimension
        # adjust ray directions according to fov if not done already
        ray_dirs_xy = self.ray_dirs.expand(depth_network.shape[0], 3, *self.ray_dirs.shape[2:])
        if self.cfg.data.category in ["hydrants", "teddybears"]:
            assert torch.all(focals_pixels > 0)
            ray_dirs_xy = ray_dirs_xy.clone()
            ray_dirs_xy[:, :2, ...] = ray_dirs_xy[:, :2, ...] / focals_pixels.unsqueeze(2).unsqueeze(3)

        # depth and offsets are shaped as (b 3 h w)
        if const_offset is not None:
            depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear + const_offset
        else:
            depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear

        pos = ray_dirs_xy * depth + offset

        return pos

    def forward(self, x, 
                source_cameras_view_to_world, 
                source_cv2wT_quat=None,
                focals_pixels=None,
                activate_output=True):

        B = x.shape[0]
        N_views = x.shape[1]
        # UNet attention will reshape outputs so that there is cross-view attention
        if self.cfg.model.cross_view_attention:
            N_views_xa = N_views
        else:
            N_views_xa = 1

        if self.cfg.cam_embd.embedding is not None:
            cam_embedding = self.get_camera_embeddings(source_cameras_view_to_world)
            assert self.cfg.cam_embd.method == "film"
            film_camera_emb = cam_embedding.reshape(B*N_views, cam_embedding.shape[2])
        else:
            film_camera_emb = None

        if self.cfg.data.category in ["hydrants", "teddybears"]:
            assert focals_pixels is not None
            focals_pixels = focals_pixels.reshape(B*N_views, *focals_pixels.shape[2:])
        else:
            assert focals_pixels is None, "Unexpected argument for non-co3d dataset"

        x = x.reshape(B*N_views, *x.shape[2:])
        if self.cfg.data.origin_distances:
            const_offset = x[:, 3:, ...]
            x = x[:, :3, ...]
        else:
            const_offset = None

        source_cameras_view_to_world = source_cameras_view_to_world.reshape(B*N_views, *source_cameras_view_to_world.shape[2:])
        x = x.contiguous(memory_format=torch.channels_last)

        if self.cfg.model.network_with_offset:

            split_network_outputs = self.network_with_offset(x,
                                                             film_camera_emb=film_camera_emb,
                                                             N_views_xa=N_views_xa
                                                             )

            split_network_outputs = split_network_outputs.split(self.split_dimensions_with_offset, dim=1)
            depth, offset, opacity, scaling, rotation, features_dc = split_network_outputs[:6]
            if self.cfg.model.max_sh_degree > 0:
                features_rest = split_network_outputs[6]

            pos = self.get_pos_from_network_output(depth, offset, focals_pixels, const_offset=const_offset)

        else:
            split_network_outputs = self.network_wo_offset(x, 
                                                           film_camera_emb=film_camera_emb,
                                                           N_views_xa=N_views_xa
                                                           ).split(self.split_dimensions_without_offset, dim=1)

            depth, opacity, scaling, rotation, features_dc = split_network_outputs[:5]
            if self.cfg.model.max_sh_degree > 0:
                features_rest = split_network_outputs[5]

            pos = self.get_pos_from_network_output(depth, 0.0, focals_pixels, const_offset=const_offset)

        if self.cfg.model.isotropic:
            scaling_out = torch.cat([scaling[:, :1, ...], scaling[:, :1, ...], scaling[:, :1, ...]], dim=1)
        else:
            scaling_out = scaling

        # Pos prediction is in camera space - compute the positions in the world space
        pos = self.flatten_vector(pos)
        pos = torch.cat([pos, 
                         torch.ones((pos.shape[0], pos.shape[1], 1), 
                                    device=pos.device, dtype=torch.float32)
                         ], dim=2)
        pos = torch.bmm(pos, source_cameras_view_to_world)
        pos = pos[:, :, :3] / (pos[:, :, 3:] + 1e-10)
        
        out_dict = {
            "xyz": pos, 
            "rotation": self.flatten_vector(self.rotation_activation(rotation)),
            "features_dc": self.flatten_vector(features_dc).unsqueeze(2)
                }

        if activate_output:
            out_dict["opacity"] = self.flatten_vector(self.opacity_activation(opacity))
            out_dict["scaling"] = self.flatten_vector(self.scaling_activation(scaling_out))
        else:
            out_dict["opacity"] = self.flatten_vector(opacity)
            out_dict["scaling"] = self.flatten_vector(scaling_out)

        assert source_cv2wT_quat is not None
        source_cv2wT_quat = source_cv2wT_quat.reshape(B*N_views, *source_cv2wT_quat.shape[2:])
        out_dict["rotation"] = self.transform_rotations(out_dict["rotation"], 
                    source_cv2wT_quat=source_cv2wT_quat)

        if self.cfg.model.max_sh_degree > 0:
            features_rest = self.flatten_vector(features_rest)
            # Channel dimension holds SH_num * RGB(3) -> renderer expects split across RGB
            # Split channel dimension B x N x C -> B x N x SH_num x 3
            out_dict["features_rest"] = features_rest.reshape(*features_rest.shape[:2], -1, 3)
            assert self.cfg.model.max_sh_degree == 1 # "Only accepting degree 1"
            out_dict["features_rest"] = self.transform_SHs(out_dict["features_rest"],
                                                           source_cameras_view_to_world)
        else:    
            out_dict["features_rest"] = torch.zeros((out_dict["features_dc"].shape[0], 
                                                     out_dict["features_dc"].shape[1], 
                                                     (self.cfg.model.max_sh_degree + 1) ** 2 - 1,
                                                     3), dtype=out_dict["features_dc"].dtype, 
                                                     device=out_dict["xyz"].device)

        out_dict = self.multi_view_union(out_dict, B, N_views)
        out_dict = self.make_contiguous(out_dict)

        return out_dict