Spaces:
Running
on
Zero
Running
on
Zero
Stanislaw Szymanowicz
commited on
Commit
•
4aa5114
1
Parent(s):
dc88ef3
Add util files
Browse files- gaussian_renderer/__init__.py +99 -0
- requirements.txt +4 -1
- scene/__init__.py +0 -0
- scene/gaussian_predictor.py +789 -0
- utils/app_utils.py +175 -0
- utils/camera_utils.py +34 -0
- utils/general_utils.py +60 -0
- utils/graphics_utils.py +30 -0
gaussian_renderer/__init__.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/graphdeco-inria/gaussian-splatting/tree/main
|
2 |
+
# to take in a predicted dictionary with 3D Gaussian parameters.
|
3 |
+
|
4 |
+
import math
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
|
9 |
+
from utils.graphics_utils import focal2fov
|
10 |
+
|
11 |
+
def render_predicted(pc : dict,
|
12 |
+
world_view_transform,
|
13 |
+
full_proj_transform,
|
14 |
+
camera_center,
|
15 |
+
bg_color : torch.Tensor,
|
16 |
+
cfg,
|
17 |
+
scaling_modifier = 1.0,
|
18 |
+
override_color = None,
|
19 |
+
focals_pixels = None):
|
20 |
+
"""
|
21 |
+
Render the scene as specified by pc dictionary.
|
22 |
+
|
23 |
+
Background tensor (bg_color) must be on GPU!
|
24 |
+
"""
|
25 |
+
|
26 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
27 |
+
screenspace_points = torch.zeros_like(pc["xyz"], dtype=pc["xyz"].dtype, requires_grad=True, device="cuda") + 0
|
28 |
+
try:
|
29 |
+
screenspace_points.retain_grad()
|
30 |
+
except:
|
31 |
+
pass
|
32 |
+
|
33 |
+
if focals_pixels == None:
|
34 |
+
tanfovx = math.tan(cfg.data.fov * np.pi / 360)
|
35 |
+
tanfovy = math.tan(cfg.data.fov * np.pi / 360)
|
36 |
+
else:
|
37 |
+
tanfovx = math.tan(0.5 * focal2fov(focals_pixels[0].item(), cfg.data.training_resolution))
|
38 |
+
tanfovy = math.tan(0.5 * focal2fov(focals_pixels[1].item(), cfg.data.training_resolution))
|
39 |
+
|
40 |
+
# Set up rasterization configuration
|
41 |
+
raster_settings = GaussianRasterizationSettings(
|
42 |
+
image_height=int(cfg.data.training_resolution),
|
43 |
+
image_width=int(cfg.data.training_resolution),
|
44 |
+
tanfovx=tanfovx,
|
45 |
+
tanfovy=tanfovy,
|
46 |
+
bg=bg_color,
|
47 |
+
scale_modifier=scaling_modifier,
|
48 |
+
viewmatrix=world_view_transform,
|
49 |
+
projmatrix=full_proj_transform,
|
50 |
+
sh_degree=cfg.model.max_sh_degree,
|
51 |
+
campos=camera_center,
|
52 |
+
prefiltered=False,
|
53 |
+
debug=False
|
54 |
+
)
|
55 |
+
|
56 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
57 |
+
|
58 |
+
means3D = pc["xyz"]
|
59 |
+
means2D = screenspace_points
|
60 |
+
opacity = pc["opacity"]
|
61 |
+
|
62 |
+
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
63 |
+
# scaling / rotation by the rasterizer.
|
64 |
+
scales = None
|
65 |
+
rotations = None
|
66 |
+
cov3D_precomp = None
|
67 |
+
|
68 |
+
scales = pc["scaling"]
|
69 |
+
rotations = pc["rotation"]
|
70 |
+
|
71 |
+
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
72 |
+
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
73 |
+
shs = None
|
74 |
+
colors_precomp = None
|
75 |
+
if override_color is None:
|
76 |
+
if "features_rest" in pc.keys():
|
77 |
+
shs = torch.cat([pc["features_dc"], pc["features_rest"]], dim=1).contiguous()
|
78 |
+
else:
|
79 |
+
shs = pc["features_dc"]
|
80 |
+
else:
|
81 |
+
colors_precomp = override_color
|
82 |
+
|
83 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
84 |
+
rendered_image, radii = rasterizer(
|
85 |
+
means3D = means3D,
|
86 |
+
means2D = means2D,
|
87 |
+
shs = shs,
|
88 |
+
colors_precomp = colors_precomp,
|
89 |
+
opacities = opacity,
|
90 |
+
scales = scales,
|
91 |
+
rotations = rotations,
|
92 |
+
cov3D_precomp = cov3D_precomp)
|
93 |
+
|
94 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
95 |
+
# They will be excluded from value updates used in the splitting criteria.
|
96 |
+
return {"render": rendered_image,
|
97 |
+
"viewspace_points": screenspace_points,
|
98 |
+
"visibility_filter" : radii > 0,
|
99 |
+
"radii": radii}
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
torch
|
|
|
2 |
tqdm
|
3 |
hydra-core
|
4 |
omegaconf
|
@@ -7,4 +8,6 @@ einops
|
|
7 |
imageio
|
8 |
moviepy
|
9 |
markupsafe==2.0.1
|
10 |
-
gradio
|
|
|
|
|
|
1 |
torch
|
2 |
+
torchvision
|
3 |
tqdm
|
4 |
hydra-core
|
5 |
omegaconf
|
|
|
8 |
imageio
|
9 |
moviepy
|
10 |
markupsafe==2.0.1
|
11 |
+
gradio
|
12 |
+
rembg
|
13 |
+
git+https://github.com/graphdeco-inria/diff-gaussian-rasterization
|
scene/__init__.py
ADDED
File without changes
|
scene/gaussian_predictor.py
ADDED
@@ -0,0 +1,789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from torch.nn.functional import silu
|
7 |
+
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
from utils.general_utils import quaternion_raw_multiply
|
11 |
+
from utils.graphics_utils import fov2focal
|
12 |
+
|
13 |
+
# U-Net implementation from EDM
|
14 |
+
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
15 |
+
#
|
16 |
+
# This work is licensed under a Creative Commons
|
17 |
+
# Attribution-NonCommercial-ShareAlike 4.0 International License.
|
18 |
+
# You should have received a copy of the license along with this
|
19 |
+
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
|
20 |
+
|
21 |
+
"""Model architectures and preconditioning schemes used in the paper
|
22 |
+
"Elucidating the Design Space of Diffusion-Based Generative Models"."""
|
23 |
+
|
24 |
+
#----------------------------------------------------------------------------
|
25 |
+
# Unified routine for initializing weights and biases.
|
26 |
+
|
27 |
+
def weight_init(shape, mode, fan_in, fan_out):
|
28 |
+
if mode == 'xavier_uniform': return np.sqrt(6 / (fan_in + fan_out)) * (torch.rand(*shape) * 2 - 1)
|
29 |
+
if mode == 'xavier_normal': return np.sqrt(2 / (fan_in + fan_out)) * torch.randn(*shape)
|
30 |
+
if mode == 'kaiming_uniform': return np.sqrt(3 / fan_in) * (torch.rand(*shape) * 2 - 1)
|
31 |
+
if mode == 'kaiming_normal': return np.sqrt(1 / fan_in) * torch.randn(*shape)
|
32 |
+
raise ValueError(f'Invalid init mode "{mode}"')
|
33 |
+
|
34 |
+
#----------------------------------------------------------------------------
|
35 |
+
# Fully-connected layer.
|
36 |
+
|
37 |
+
class Linear(torch.nn.Module):
|
38 |
+
def __init__(self, in_features, out_features, bias=True, init_mode='kaiming_normal', init_weight=1, init_bias=0):
|
39 |
+
super().__init__()
|
40 |
+
self.in_features = in_features
|
41 |
+
self.out_features = out_features
|
42 |
+
init_kwargs = dict(mode=init_mode, fan_in=in_features, fan_out=out_features)
|
43 |
+
self.weight = torch.nn.Parameter(weight_init([out_features, in_features], **init_kwargs) * init_weight)
|
44 |
+
self.bias = torch.nn.Parameter(weight_init([out_features], **init_kwargs) * init_bias) if bias else None
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
x = x @ self.weight.to(x.dtype).t()
|
48 |
+
if self.bias is not None:
|
49 |
+
x = x.add_(self.bias.to(x.dtype))
|
50 |
+
return x
|
51 |
+
|
52 |
+
#----------------------------------------------------------------------------
|
53 |
+
# Convolutional layer with optional up/downsampling.
|
54 |
+
|
55 |
+
class Conv2d(torch.nn.Module):
|
56 |
+
def __init__(self,
|
57 |
+
in_channels, out_channels, kernel, bias=True, up=False, down=False,
|
58 |
+
resample_filter=[1,1], fused_resample=False, init_mode='kaiming_normal', init_weight=1, init_bias=0,
|
59 |
+
):
|
60 |
+
assert not (up and down)
|
61 |
+
super().__init__()
|
62 |
+
self.in_channels = in_channels
|
63 |
+
self.out_channels = out_channels
|
64 |
+
self.up = up
|
65 |
+
self.down = down
|
66 |
+
self.fused_resample = fused_resample
|
67 |
+
init_kwargs = dict(mode=init_mode, fan_in=in_channels*kernel*kernel, fan_out=out_channels*kernel*kernel)
|
68 |
+
self.weight = torch.nn.Parameter(weight_init([out_channels, in_channels, kernel, kernel], **init_kwargs) * init_weight) if kernel else None
|
69 |
+
self.bias = torch.nn.Parameter(weight_init([out_channels], **init_kwargs) * init_bias) if kernel and bias else None
|
70 |
+
f = torch.as_tensor(resample_filter, dtype=torch.float32)
|
71 |
+
f = f.ger(f).unsqueeze(0).unsqueeze(1) / f.sum().square()
|
72 |
+
self.register_buffer('resample_filter', f if up or down else None)
|
73 |
+
|
74 |
+
def forward(self, x, N_views_xa=1):
|
75 |
+
w = self.weight.to(x.dtype) if self.weight is not None else None
|
76 |
+
b = self.bias.to(x.dtype) if self.bias is not None else None
|
77 |
+
f = self.resample_filter.to(x.dtype) if self.resample_filter is not None else None
|
78 |
+
w_pad = w.shape[-1] // 2 if w is not None else 0
|
79 |
+
f_pad = (f.shape[-1] - 1) // 2 if f is not None else 0
|
80 |
+
|
81 |
+
if self.fused_resample and self.up and w is not None:
|
82 |
+
x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=max(f_pad - w_pad, 0))
|
83 |
+
x = torch.nn.functional.conv2d(x, w, padding=max(w_pad - f_pad, 0))
|
84 |
+
elif self.fused_resample and self.down and w is not None:
|
85 |
+
x = torch.nn.functional.conv2d(x, w, padding=w_pad+f_pad)
|
86 |
+
x = torch.nn.functional.conv2d(x, f.tile([self.out_channels, 1, 1, 1]), groups=self.out_channels, stride=2)
|
87 |
+
else:
|
88 |
+
if self.up:
|
89 |
+
x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad)
|
90 |
+
if self.down:
|
91 |
+
x = torch.nn.functional.conv2d(x, f.tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad)
|
92 |
+
if w is not None:
|
93 |
+
x = torch.nn.functional.conv2d(x, w, padding=w_pad)
|
94 |
+
if b is not None:
|
95 |
+
x = x.add_(b.reshape(1, -1, 1, 1))
|
96 |
+
return x
|
97 |
+
|
98 |
+
#----------------------------------------------------------------------------
|
99 |
+
# Group normalization.
|
100 |
+
|
101 |
+
class GroupNorm(torch.nn.Module):
|
102 |
+
def __init__(self, num_channels, num_groups=32, min_channels_per_group=4, eps=1e-5):
|
103 |
+
super().__init__()
|
104 |
+
self.num_groups = min(num_groups, num_channels // min_channels_per_group)
|
105 |
+
self.eps = eps
|
106 |
+
self.weight = torch.nn.Parameter(torch.ones(num_channels))
|
107 |
+
self.bias = torch.nn.Parameter(torch.zeros(num_channels))
|
108 |
+
|
109 |
+
def forward(self, x, N_views_xa=1):
|
110 |
+
x = torch.nn.functional.group_norm(x, num_groups=self.num_groups, weight=self.weight.to(x.dtype), bias=self.bias.to(x.dtype), eps=self.eps)
|
111 |
+
return x.to(memory_format=torch.channels_last)
|
112 |
+
|
113 |
+
#----------------------------------------------------------------------------
|
114 |
+
# Attention weight computation, i.e., softmax(Q^T * K).
|
115 |
+
# Performs all computation using FP32, but uses the original datatype for
|
116 |
+
# inputs/outputs/gradients to conserve memory.
|
117 |
+
|
118 |
+
class AttentionOp(torch.autograd.Function):
|
119 |
+
@staticmethod
|
120 |
+
def forward(ctx, q, k):
|
121 |
+
w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype)
|
122 |
+
ctx.save_for_backward(q, k, w)
|
123 |
+
return w
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def backward(ctx, dw):
|
127 |
+
q, k, w = ctx.saved_tensors
|
128 |
+
db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32)
|
129 |
+
dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype) / np.sqrt(k.shape[1])
|
130 |
+
dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype) / np.sqrt(k.shape[1])
|
131 |
+
return dq, dk
|
132 |
+
|
133 |
+
#----------------------------------------------------------------------------
|
134 |
+
# Timestep embedding used in the DDPM++ and ADM architectures.
|
135 |
+
|
136 |
+
class PositionalEmbedding(torch.nn.Module):
|
137 |
+
def __init__(self, num_channels, max_positions=10000, endpoint=False):
|
138 |
+
super().__init__()
|
139 |
+
self.num_channels = num_channels
|
140 |
+
self.max_positions = max_positions
|
141 |
+
self.endpoint = endpoint
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
b, c = x.shape
|
145 |
+
x = rearrange(x, 'b c -> (b c)')
|
146 |
+
freqs = torch.arange(start=0, end=self.num_channels//2, dtype=torch.float32, device=x.device)
|
147 |
+
freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0))
|
148 |
+
freqs = (1 / self.max_positions) ** freqs
|
149 |
+
x = x.ger(freqs.to(x.dtype))
|
150 |
+
x = torch.cat([x.cos(), x.sin()], dim=1)
|
151 |
+
x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b)
|
152 |
+
return x
|
153 |
+
|
154 |
+
#----------------------------------------------------------------------------
|
155 |
+
# Timestep embedding used in the NCSN++ architecture.
|
156 |
+
|
157 |
+
class FourierEmbedding(torch.nn.Module):
|
158 |
+
def __init__(self, num_channels, scale=16):
|
159 |
+
super().__init__()
|
160 |
+
self.register_buffer('freqs', torch.randn(num_channels // 2) * scale)
|
161 |
+
|
162 |
+
def forward(self, x):
|
163 |
+
b, c = x.shape
|
164 |
+
x = rearrange(x, 'b c -> (b c)')
|
165 |
+
x = x.ger((2 * np.pi * self.freqs).to(x.dtype))
|
166 |
+
x = torch.cat([x.cos(), x.sin()], dim=1)
|
167 |
+
x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b)
|
168 |
+
return x
|
169 |
+
|
170 |
+
class CrossAttentionBlock(torch.nn.Module):
|
171 |
+
def __init__(self, num_channels, num_heads = 1, eps=1e-5):
|
172 |
+
super().__init__()
|
173 |
+
|
174 |
+
self.num_heads = 1
|
175 |
+
init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2))
|
176 |
+
init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5)
|
177 |
+
|
178 |
+
self.norm = GroupNorm(num_channels=num_channels, eps=eps)
|
179 |
+
|
180 |
+
self.q_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=1, **init_attn)
|
181 |
+
self.kv_proj = Conv2d(in_channels=num_channels, out_channels=num_channels*2, kernel=1, **init_attn)
|
182 |
+
|
183 |
+
self.out_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=3, **init_zero)
|
184 |
+
|
185 |
+
def forward(self, q, kv):
|
186 |
+
q_proj = self.q_proj(self.norm(q)).reshape(q.shape[0] * self.num_heads, q.shape[1] // self.num_heads, -1)
|
187 |
+
k_proj, v_proj = self.kv_proj(self.norm(kv)).reshape(kv.shape[0] * self.num_heads,
|
188 |
+
kv.shape[1] // self.num_heads, 2, -1).unbind(2)
|
189 |
+
w = AttentionOp.apply(q_proj, k_proj)
|
190 |
+
a = torch.einsum('nqk,nck->ncq', w, v_proj)
|
191 |
+
x = self.out_proj(a.reshape(*q.shape)).add_(q)
|
192 |
+
|
193 |
+
return x
|
194 |
+
|
195 |
+
#----------------------------------------------------------------------------
|
196 |
+
# Unified U-Net block with optional up/downsampling and self-attention.
|
197 |
+
# Represents the union of all features employed by the DDPM++, NCSN++, and
|
198 |
+
# ADM architectures.
|
199 |
+
|
200 |
+
class UNetBlock(torch.nn.Module):
|
201 |
+
def __init__(self,
|
202 |
+
in_channels, out_channels, emb_channels, up=False, down=False, attention=False,
|
203 |
+
num_heads=None, channels_per_head=64, dropout=0, skip_scale=1, eps=1e-5,
|
204 |
+
resample_filter=[1,1], resample_proj=False, adaptive_scale=True,
|
205 |
+
init=dict(), init_zero=dict(init_weight=0), init_attn=None,
|
206 |
+
):
|
207 |
+
super().__init__()
|
208 |
+
self.in_channels = in_channels
|
209 |
+
self.out_channels = out_channels
|
210 |
+
if emb_channels is not None:
|
211 |
+
self.affine = Linear(in_features=emb_channels, out_features=out_channels*(2 if adaptive_scale else 1), **init)
|
212 |
+
self.num_heads = 0 if not attention else num_heads if num_heads is not None else out_channels // channels_per_head
|
213 |
+
self.dropout = dropout
|
214 |
+
self.skip_scale = skip_scale
|
215 |
+
self.adaptive_scale = adaptive_scale
|
216 |
+
|
217 |
+
self.norm0 = GroupNorm(num_channels=in_channels, eps=eps)
|
218 |
+
self.conv0 = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=3, up=up, down=down, resample_filter=resample_filter, **init)
|
219 |
+
self.norm1 = GroupNorm(num_channels=out_channels, eps=eps)
|
220 |
+
self.conv1 = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=3, **init_zero)
|
221 |
+
|
222 |
+
self.skip = None
|
223 |
+
if out_channels != in_channels or up or down:
|
224 |
+
kernel = 1 if resample_proj or out_channels!= in_channels else 0
|
225 |
+
self.skip = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=kernel, up=up, down=down, resample_filter=resample_filter, **init)
|
226 |
+
|
227 |
+
if self.num_heads:
|
228 |
+
self.norm2 = GroupNorm(num_channels=out_channels, eps=eps)
|
229 |
+
self.qkv = Conv2d(in_channels=out_channels, out_channels=out_channels*3, kernel=1, **(init_attn if init_attn is not None else init))
|
230 |
+
self.proj = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=1, **init_zero)
|
231 |
+
|
232 |
+
def forward(self, x, emb=None, N_views_xa=1):
|
233 |
+
orig = x
|
234 |
+
x = self.conv0(silu(self.norm0(x)))
|
235 |
+
|
236 |
+
if emb is not None:
|
237 |
+
params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype)
|
238 |
+
if self.adaptive_scale:
|
239 |
+
scale, shift = params.chunk(chunks=2, dim=1)
|
240 |
+
x = silu(torch.addcmul(shift, self.norm1(x), scale + 1))
|
241 |
+
else:
|
242 |
+
x = silu(self.norm1(x.add_(params)))
|
243 |
+
|
244 |
+
x = silu(self.norm1(x))
|
245 |
+
|
246 |
+
x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training))
|
247 |
+
x = x.add_(self.skip(orig) if self.skip is not None else orig)
|
248 |
+
x = x * self.skip_scale
|
249 |
+
|
250 |
+
if self.num_heads:
|
251 |
+
if N_views_xa != 1:
|
252 |
+
B, C, H, W = x.shape
|
253 |
+
# (B, C, H, W) -> (B/N, N, C, H, W) -> (B/N, N, H, W, C)
|
254 |
+
x = x.reshape(B // N_views_xa, N_views_xa, *x.shape[1:]).permute(0, 1, 3, 4, 2)
|
255 |
+
# (B/N, N, H, W, C) -> (B/N, N*H, W, C) -> (B/N, C, N*H, W)
|
256 |
+
x = x.reshape(B // N_views_xa, N_views_xa * x.shape[2], *x.shape[3:]).permute(0, 3, 1, 2)
|
257 |
+
q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2)
|
258 |
+
w = AttentionOp.apply(q, k)
|
259 |
+
a = torch.einsum('nqk,nck->ncq', w, v)
|
260 |
+
x = self.proj(a.reshape(*x.shape)).add_(x)
|
261 |
+
x = x * self.skip_scale
|
262 |
+
if N_views_xa != 1:
|
263 |
+
# (B/N, C, N*H, W) -> (B/N, N*H, W, C)
|
264 |
+
x = x.permute(0, 2, 3, 1)
|
265 |
+
# (B/N, N*H, W, C) -> (B/N, N, H, W, C) -> (B/N, N, C, H, W)
|
266 |
+
x = x.reshape(B // N_views_xa, N_views_xa, H, W, C).permute(0, 1, 4, 2, 3)
|
267 |
+
# (B/N, N, C, H, W) -> # (B, C, H, W)
|
268 |
+
x = x.reshape(B, C, H, W)
|
269 |
+
return x
|
270 |
+
|
271 |
+
#----------------------------------------------------------------------------
|
272 |
+
# Reimplementation of the DDPM++ and NCSN++ architectures from the paper
|
273 |
+
# "Score-Based Generative Modeling through Stochastic Differential
|
274 |
+
# Equations". Equivalent to the original implementation by Song et al.,
|
275 |
+
# available at https://github.com/yang-song/score_sde_pytorch
|
276 |
+
# taken from EDM repository https://github.com/NVlabs/edm/blob/main/training/networks.py#L372
|
277 |
+
|
278 |
+
class SongUNet(nn.Module):
|
279 |
+
def __init__(self,
|
280 |
+
img_resolution, # Image resolution at input/output.
|
281 |
+
in_channels, # Number of color channels at input.
|
282 |
+
out_channels, # Number of color channels at output.
|
283 |
+
emb_dim_in = 0, # Input embedding dim.
|
284 |
+
augment_dim = 0, # Augmentation label dimensionality, 0 = no augmentation.
|
285 |
+
|
286 |
+
model_channels = 128, # Base multiplier for the number of channels.
|
287 |
+
channel_mult = [1,2,2,2], # Per-resolution multipliers for the number of channels.
|
288 |
+
channel_mult_emb = 4, # Multiplier for the dimensionality of the embedding vector.
|
289 |
+
num_blocks = 4, # Number of residual blocks per resolution.
|
290 |
+
attn_resolutions = [16], # List of resolutions with self-attention.
|
291 |
+
dropout = 0.10, # Dropout probability of intermediate activations.
|
292 |
+
label_dropout = 0, # Dropout probability of class labels for classifier-free guidance.
|
293 |
+
|
294 |
+
embedding_type = 'positional', # Timestep embedding type: 'positional' for DDPM++, 'fourier' for NCSN++.
|
295 |
+
channel_mult_noise = 0, # Timestep embedding size: 1 for DDPM++, 2 for NCSN++.
|
296 |
+
encoder_type = 'standard', # Encoder architecture: 'standard' for DDPM++, 'residual' for NCSN++.
|
297 |
+
decoder_type = 'standard', # Decoder architecture: 'standard' for both DDPM++ and NCSN++.
|
298 |
+
resample_filter = [1,1], # Resampling filter: [1,1] for DDPM++, [1,3,3,1] for NCSN++.
|
299 |
+
):
|
300 |
+
assert embedding_type in ['fourier', 'positional']
|
301 |
+
assert encoder_type in ['standard', 'skip', 'residual']
|
302 |
+
assert decoder_type in ['standard', 'skip']
|
303 |
+
|
304 |
+
super().__init__()
|
305 |
+
self.label_dropout = label_dropout
|
306 |
+
self.emb_dim_in = emb_dim_in
|
307 |
+
if emb_dim_in > 0:
|
308 |
+
emb_channels = model_channels * channel_mult_emb
|
309 |
+
else:
|
310 |
+
emb_channels = None
|
311 |
+
noise_channels = model_channels * channel_mult_noise
|
312 |
+
init = dict(init_mode='xavier_uniform')
|
313 |
+
init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5)
|
314 |
+
init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2))
|
315 |
+
block_kwargs = dict(
|
316 |
+
emb_channels=emb_channels, num_heads=1, dropout=dropout, skip_scale=np.sqrt(0.5), eps=1e-6,
|
317 |
+
resample_filter=resample_filter, resample_proj=True, adaptive_scale=False,
|
318 |
+
init=init, init_zero=init_zero, init_attn=init_attn,
|
319 |
+
)
|
320 |
+
|
321 |
+
# Mapping.
|
322 |
+
# self.map_label = Linear(in_features=label_dim, out_features=noise_channels, **init) if label_dim else None
|
323 |
+
# self.map_augment = Linear(in_features=augment_dim, out_features=noise_channels, bias=False, **init) if augment_dim else None
|
324 |
+
# self.map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init)
|
325 |
+
# self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)
|
326 |
+
if emb_dim_in > 0:
|
327 |
+
self.map_layer0 = Linear(in_features=emb_dim_in, out_features=emb_channels, **init)
|
328 |
+
self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)
|
329 |
+
|
330 |
+
if noise_channels > 0:
|
331 |
+
self.noise_map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init)
|
332 |
+
self.noise_map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)
|
333 |
+
|
334 |
+
# Encoder.
|
335 |
+
self.enc = torch.nn.ModuleDict()
|
336 |
+
cout = in_channels
|
337 |
+
caux = in_channels
|
338 |
+
for level, mult in enumerate(channel_mult):
|
339 |
+
res = img_resolution >> level
|
340 |
+
if level == 0:
|
341 |
+
cin = cout
|
342 |
+
cout = model_channels
|
343 |
+
self.enc[f'{res}x{res}_conv'] = Conv2d(in_channels=cin, out_channels=cout, kernel=3, **init)
|
344 |
+
else:
|
345 |
+
self.enc[f'{res}x{res}_down'] = UNetBlock(in_channels=cout, out_channels=cout, down=True, **block_kwargs)
|
346 |
+
if encoder_type == 'skip':
|
347 |
+
self.enc[f'{res}x{res}_aux_down'] = Conv2d(in_channels=caux, out_channels=caux, kernel=0, down=True, resample_filter=resample_filter)
|
348 |
+
self.enc[f'{res}x{res}_aux_skip'] = Conv2d(in_channels=caux, out_channels=cout, kernel=1, **init)
|
349 |
+
if encoder_type == 'residual':
|
350 |
+
self.enc[f'{res}x{res}_aux_residual'] = Conv2d(in_channels=caux, out_channels=cout, kernel=3, down=True, resample_filter=resample_filter, fused_resample=True, **init)
|
351 |
+
caux = cout
|
352 |
+
for idx in range(num_blocks):
|
353 |
+
cin = cout
|
354 |
+
cout = model_channels * mult
|
355 |
+
attn = (res in attn_resolutions)
|
356 |
+
self.enc[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs)
|
357 |
+
skips = [block.out_channels for name, block in self.enc.items() if 'aux' not in name]
|
358 |
+
|
359 |
+
# Decoder.
|
360 |
+
self.dec = torch.nn.ModuleDict()
|
361 |
+
for level, mult in reversed(list(enumerate(channel_mult))):
|
362 |
+
res = img_resolution >> level
|
363 |
+
if level == len(channel_mult) - 1:
|
364 |
+
self.dec[f'{res}x{res}_in0'] = UNetBlock(in_channels=cout, out_channels=cout, attention=True, **block_kwargs)
|
365 |
+
self.dec[f'{res}x{res}_in1'] = UNetBlock(in_channels=cout, out_channels=cout, **block_kwargs)
|
366 |
+
else:
|
367 |
+
self.dec[f'{res}x{res}_up'] = UNetBlock(in_channels=cout, out_channels=cout, up=True, **block_kwargs)
|
368 |
+
for idx in range(num_blocks + 1):
|
369 |
+
cin = cout + skips.pop()
|
370 |
+
cout = model_channels * mult
|
371 |
+
attn = (idx == num_blocks and res in attn_resolutions)
|
372 |
+
self.dec[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs)
|
373 |
+
if decoder_type == 'skip' or level == 0:
|
374 |
+
if decoder_type == 'skip' and level < len(channel_mult) - 1:
|
375 |
+
self.dec[f'{res}x{res}_aux_up'] = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=0, up=True, resample_filter=resample_filter)
|
376 |
+
self.dec[f'{res}x{res}_aux_norm'] = GroupNorm(num_channels=cout, eps=1e-6)
|
377 |
+
self.dec[f'{res}x{res}_aux_conv'] = Conv2d(in_channels=cout, out_channels=out_channels, kernel=3, init_weight=0.2, **init)# init_zero)
|
378 |
+
|
379 |
+
def forward(self, x, film_camera_emb=None, N_views_xa=1):
|
380 |
+
|
381 |
+
emb = None
|
382 |
+
|
383 |
+
if film_camera_emb is not None:
|
384 |
+
if self.emb_dim_in != 1:
|
385 |
+
film_camera_emb = film_camera_emb.reshape(
|
386 |
+
film_camera_emb.shape[0], 2, -1).flip(1).reshape(*film_camera_emb.shape) # swap sin/cos
|
387 |
+
film_camera_emb = silu(self.map_layer0(film_camera_emb))
|
388 |
+
film_camera_emb = silu(self.map_layer1(film_camera_emb))
|
389 |
+
emb = film_camera_emb
|
390 |
+
|
391 |
+
# Encoder.
|
392 |
+
skips = []
|
393 |
+
aux = x
|
394 |
+
for name, block in self.enc.items():
|
395 |
+
if 'aux_down' in name:
|
396 |
+
aux = block(aux, N_views_xa)
|
397 |
+
elif 'aux_skip' in name:
|
398 |
+
x = skips[-1] = x + block(aux, N_views_xa)
|
399 |
+
elif 'aux_residual' in name:
|
400 |
+
x = skips[-1] = aux = (x + block(aux, N_views_xa)) / np.sqrt(2)
|
401 |
+
else:
|
402 |
+
x = block(x, emb=emb, N_views_xa=N_views_xa) if isinstance(block, UNetBlock) \
|
403 |
+
else block(x, N_views_xa=N_views_xa)
|
404 |
+
skips.append(x)
|
405 |
+
|
406 |
+
# Decoder.
|
407 |
+
aux = None
|
408 |
+
tmp = None
|
409 |
+
for name, block in self.dec.items():
|
410 |
+
if 'aux_up' in name:
|
411 |
+
aux = block(aux, N_views_xa)
|
412 |
+
elif 'aux_norm' in name:
|
413 |
+
tmp = block(x, N_views_xa)
|
414 |
+
elif 'aux_conv' in name:
|
415 |
+
tmp = block(silu(tmp), N_views_xa)
|
416 |
+
aux = tmp if aux is None else tmp + aux
|
417 |
+
else:
|
418 |
+
if x.shape[1] != block.in_channels:
|
419 |
+
# skip connection is pixel-aligned which is good for
|
420 |
+
# foreground features
|
421 |
+
# but it's not good for gradient flow and background features
|
422 |
+
x = torch.cat([x, skips.pop()], dim=1)
|
423 |
+
x = block(x, emb=emb, N_views_xa=N_views_xa)
|
424 |
+
return aux
|
425 |
+
|
426 |
+
class SingleImageSongUNetPredictor(nn.Module):
|
427 |
+
def __init__(self, cfg, out_channels, bias, scale):
|
428 |
+
super(SingleImageSongUNetPredictor, self).__init__()
|
429 |
+
self.out_channels = out_channels
|
430 |
+
self.cfg = cfg
|
431 |
+
if cfg.cam_embd.embedding is None:
|
432 |
+
in_channels = 3
|
433 |
+
emb_dim_in = 0
|
434 |
+
else:
|
435 |
+
in_channels = 3
|
436 |
+
emb_dim_in = 6 * cfg.cam_embd.dimension
|
437 |
+
|
438 |
+
self.encoder = SongUNet(cfg.data.training_resolution,
|
439 |
+
in_channels,
|
440 |
+
sum(out_channels),
|
441 |
+
model_channels=cfg.model.base_dim,
|
442 |
+
num_blocks=cfg.model.num_blocks,
|
443 |
+
emb_dim_in=emb_dim_in,
|
444 |
+
channel_mult_noise=0,
|
445 |
+
attn_resolutions=cfg.model.attention_resolutions)
|
446 |
+
self.out = nn.Conv2d(in_channels=sum(out_channels),
|
447 |
+
out_channels=sum(out_channels),
|
448 |
+
kernel_size=1)
|
449 |
+
|
450 |
+
start_channels = 0
|
451 |
+
for out_channel, b, s in zip(out_channels, bias, scale):
|
452 |
+
nn.init.xavier_uniform_(
|
453 |
+
self.out.weight[start_channels:start_channels+out_channel,
|
454 |
+
:, :, :], s)
|
455 |
+
nn.init.constant_(
|
456 |
+
self.out.bias[start_channels:start_channels+out_channel], b)
|
457 |
+
start_channels += out_channel
|
458 |
+
|
459 |
+
def forward(self, x, film_camera_emb=None, N_views_xa=1):
|
460 |
+
x = self.encoder(x,
|
461 |
+
film_camera_emb=film_camera_emb,
|
462 |
+
N_views_xa=N_views_xa)
|
463 |
+
|
464 |
+
return self.out(x)
|
465 |
+
|
466 |
+
def networkCallBack(cfg, name, out_channels, **kwargs):
|
467 |
+
assert name == "SingleUNet"
|
468 |
+
return SingleImageSongUNetPredictor(cfg, out_channels, **kwargs)
|
469 |
+
|
470 |
+
class GaussianSplatPredictor(nn.Module):
|
471 |
+
def __init__(self, cfg):
|
472 |
+
super(GaussianSplatPredictor, self).__init__()
|
473 |
+
self.cfg = cfg
|
474 |
+
assert cfg.model.network_with_offset or cfg.model.network_without_offset, \
|
475 |
+
"Need at least one network"
|
476 |
+
|
477 |
+
if cfg.model.network_with_offset:
|
478 |
+
split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(True, cfg)
|
479 |
+
self.network_with_offset = networkCallBack(cfg,
|
480 |
+
cfg.model.name,
|
481 |
+
split_dimensions,
|
482 |
+
scale = scale_inits,
|
483 |
+
bias = bias_inits)
|
484 |
+
assert not cfg.model.network_without_offset, "Can only have one network"
|
485 |
+
if cfg.model.network_without_offset:
|
486 |
+
split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(False, cfg)
|
487 |
+
self.network_wo_offset = networkCallBack(cfg,
|
488 |
+
cfg.model.name,
|
489 |
+
split_dimensions,
|
490 |
+
scale = scale_inits,
|
491 |
+
bias = bias_inits)
|
492 |
+
assert not cfg.model.network_with_offset, "Can only have one network"
|
493 |
+
|
494 |
+
self.init_ray_dirs()
|
495 |
+
|
496 |
+
# Activation functions for different parameters
|
497 |
+
self.depth_act = nn.Sigmoid()
|
498 |
+
self.scaling_activation = torch.exp
|
499 |
+
self.opacity_activation = torch.sigmoid
|
500 |
+
self.rotation_activation = torch.nn.functional.normalize
|
501 |
+
|
502 |
+
if self.cfg.model.max_sh_degree > 0:
|
503 |
+
self.init_sh_transform_matrices()
|
504 |
+
|
505 |
+
if self.cfg.cam_embd.embedding is not None:
|
506 |
+
if self.cfg.cam_embd.encode_embedding is None:
|
507 |
+
self.cam_embedding_map = nn.Identity()
|
508 |
+
elif self.cfg.cam_embd.encode_embedding == "positional":
|
509 |
+
self.cam_embedding_map = PositionalEmbedding(self.cfg.cam_embd.dimension)
|
510 |
+
|
511 |
+
def init_sh_transform_matrices(self):
|
512 |
+
v_to_sh_transform = torch.tensor([[ 0, 0,-1],
|
513 |
+
[-1, 0, 0],
|
514 |
+
[ 0, 1, 0]], dtype=torch.float32)
|
515 |
+
sh_to_v_transform = v_to_sh_transform.transpose(0, 1)
|
516 |
+
self.register_buffer('sh_to_v_transform', sh_to_v_transform.unsqueeze(0))
|
517 |
+
self.register_buffer('v_to_sh_transform', v_to_sh_transform.unsqueeze(0))
|
518 |
+
|
519 |
+
def init_ray_dirs(self):
|
520 |
+
x = torch.linspace(-self.cfg.data.training_resolution // 2 + 0.5,
|
521 |
+
self.cfg.data.training_resolution // 2 - 0.5,
|
522 |
+
self.cfg.data.training_resolution)
|
523 |
+
y = torch.linspace( self.cfg.data.training_resolution // 2 - 0.5,
|
524 |
+
-self.cfg.data.training_resolution // 2 + 0.5,
|
525 |
+
self.cfg.data.training_resolution)
|
526 |
+
if self.cfg.model.inverted_x:
|
527 |
+
x = -x
|
528 |
+
if self.cfg.model.inverted_y:
|
529 |
+
y = -y
|
530 |
+
grid_x, grid_y = torch.meshgrid(x, y, indexing='xy')
|
531 |
+
ones = torch.ones_like(grid_x, dtype=grid_x.dtype)
|
532 |
+
ray_dirs = torch.stack([grid_x, grid_y, ones]).unsqueeze(0)
|
533 |
+
|
534 |
+
# for cars and chairs the focal length is fixed across dataset
|
535 |
+
# so we can preprocess it
|
536 |
+
# for co3d this is done on the fly
|
537 |
+
if self.cfg.data.category not in ["hydrants", "teddybears"]:
|
538 |
+
ray_dirs[:, :2, ...] /= fov2focal(self.cfg.data.fov * np.pi / 180,
|
539 |
+
self.cfg.data.training_resolution)
|
540 |
+
self.register_buffer('ray_dirs', ray_dirs)
|
541 |
+
|
542 |
+
def get_splits_and_inits(self, with_offset, cfg):
|
543 |
+
# Gets channel split dimensions and last layer initialisation
|
544 |
+
split_dimensions = []
|
545 |
+
scale_inits = []
|
546 |
+
bias_inits = []
|
547 |
+
|
548 |
+
if with_offset:
|
549 |
+
split_dimensions = split_dimensions + [1, 3, 1, 3, 4, 3]
|
550 |
+
scale_inits = scale_inits + [cfg.model.depth_scale,
|
551 |
+
cfg.model.xyz_scale,
|
552 |
+
cfg.model.opacity_scale,
|
553 |
+
cfg.model.scale_scale,
|
554 |
+
1.0,
|
555 |
+
5.0]
|
556 |
+
bias_inits = [cfg.model.depth_bias,
|
557 |
+
cfg.model.xyz_bias,
|
558 |
+
cfg.model.opacity_bias,
|
559 |
+
np.log(cfg.model.scale_bias),
|
560 |
+
0.0,
|
561 |
+
0.0]
|
562 |
+
else:
|
563 |
+
split_dimensions = split_dimensions + [1, 1, 3, 4, 3]
|
564 |
+
scale_inits = scale_inits + [cfg.model.depth_scale,
|
565 |
+
cfg.model.opacity_scale,
|
566 |
+
cfg.model.scale_scale,
|
567 |
+
1.0,
|
568 |
+
5.0]
|
569 |
+
bias_inits = bias_inits + [cfg.model.depth_bias,
|
570 |
+
cfg.model.opacity_bias,
|
571 |
+
np.log(cfg.model.scale_bias),
|
572 |
+
0.0,
|
573 |
+
0.0]
|
574 |
+
|
575 |
+
if cfg.model.max_sh_degree != 0:
|
576 |
+
sh_num = (self.cfg.model.max_sh_degree + 1) ** 2 - 1
|
577 |
+
sh_num_rgb = sh_num * 3
|
578 |
+
split_dimensions.append(sh_num_rgb)
|
579 |
+
scale_inits.append(0.0)
|
580 |
+
bias_inits.append(0.0)
|
581 |
+
|
582 |
+
if with_offset:
|
583 |
+
self.split_dimensions_with_offset = split_dimensions
|
584 |
+
else:
|
585 |
+
self.split_dimensions_without_offset = split_dimensions
|
586 |
+
|
587 |
+
return split_dimensions, scale_inits, bias_inits
|
588 |
+
|
589 |
+
def flatten_vector(self, x):
|
590 |
+
# Gets rid of the image dimensions and flattens to a point list
|
591 |
+
# B x C x H x W -> B x C x N -> B x N x C
|
592 |
+
return x.reshape(x.shape[0], x.shape[1], -1).permute(0, 2, 1)
|
593 |
+
|
594 |
+
def make_contiguous(self, tensor_dict):
|
595 |
+
return {k: v.contiguous() for k, v in tensor_dict.items()}
|
596 |
+
|
597 |
+
def multi_view_union(self, tensor_dict, B, N_view):
|
598 |
+
for t_name, t in tensor_dict.items():
|
599 |
+
t = t.reshape(B, N_view, *t.shape[1:])
|
600 |
+
tensor_dict[t_name] = t.reshape(B, N_view * t.shape[2], *t.shape[3:])
|
601 |
+
return tensor_dict
|
602 |
+
|
603 |
+
def get_camera_embeddings(self, cameras):
|
604 |
+
# get embedding
|
605 |
+
# pass through encoding
|
606 |
+
b, n_view = cameras.shape[:2]
|
607 |
+
if self.cfg.cam_embd.embedding == "index":
|
608 |
+
cam_embedding = torch.arange(n_view,
|
609 |
+
dtype=cameras.dtype,
|
610 |
+
device=cameras.device,
|
611 |
+
).unsqueeze(0).expand(b, n_view).unsqueeze(2)
|
612 |
+
if self.cfg.cam_embd.embedding == "pose":
|
613 |
+
# concatenate origin and z-vector. cameras are in row-major order
|
614 |
+
cam_embedding = torch.cat([cameras[:, :, 3, :3], cameras[:, :, 2, :3]], dim=2)
|
615 |
+
|
616 |
+
cam_embedding = rearrange(cam_embedding, 'b n_view c -> (b n_view) c')
|
617 |
+
cam_embedding = self.cam_embedding_map(cam_embedding)
|
618 |
+
cam_embedding = rearrange(cam_embedding, '(b n_view) c -> b n_view c', b=b, n_view=n_view)
|
619 |
+
|
620 |
+
return cam_embedding
|
621 |
+
|
622 |
+
def transform_SHs(self, shs, source_cameras_to_world):
|
623 |
+
# shs: B x N x SH_num x 3
|
624 |
+
# source_cameras_to_world: B 4 4
|
625 |
+
assert shs.shape[2] == 3, "Can only process shs order 1"
|
626 |
+
shs = rearrange(shs, 'b n sh_num rgb -> b (n rgb) sh_num')
|
627 |
+
transforms = torch.bmm(
|
628 |
+
self.sh_to_v_transform.expand(source_cameras_to_world.shape[0], 3, 3),
|
629 |
+
# transpose is because source_cameras_to_world is
|
630 |
+
# in row major order
|
631 |
+
source_cameras_to_world[:, :3, :3])
|
632 |
+
transforms = torch.bmm(transforms,
|
633 |
+
self.v_to_sh_transform.expand(source_cameras_to_world.shape[0], 3, 3))
|
634 |
+
|
635 |
+
shs_transformed = torch.bmm(shs, transforms)
|
636 |
+
shs_transformed = rearrange(shs_transformed, 'b (n rgb) sh_num -> b n sh_num rgb', rgb=3)
|
637 |
+
|
638 |
+
return shs_transformed
|
639 |
+
|
640 |
+
def transform_rotations(self, rotations, source_cv2wT_quat):
|
641 |
+
"""
|
642 |
+
Applies a transform that rotates the predicted rotations from
|
643 |
+
camera space to world space.
|
644 |
+
Args:
|
645 |
+
rotations: predicted in-camera rotation quaternions (B x N x 4)
|
646 |
+
source_cameras_to_world: transformation quaternions from
|
647 |
+
camera-to-world matrices transposed(B x 4)
|
648 |
+
Retures:
|
649 |
+
rotations with appropriately applied transform to world space
|
650 |
+
"""
|
651 |
+
|
652 |
+
Mq = source_cv2wT_quat.unsqueeze(1).expand(*rotations.shape)
|
653 |
+
|
654 |
+
rotations = quaternion_raw_multiply(Mq, rotations)
|
655 |
+
|
656 |
+
return rotations
|
657 |
+
|
658 |
+
def get_pos_from_network_output(self, depth_network, offset, focals_pixels, const_offset=None):
|
659 |
+
|
660 |
+
# expands ray dirs along the batch dimension
|
661 |
+
# adjust ray directions according to fov if not done already
|
662 |
+
ray_dirs_xy = self.ray_dirs.expand(depth_network.shape[0], 3, *self.ray_dirs.shape[2:])
|
663 |
+
if self.cfg.data.category in ["hydrants", "teddybears"]:
|
664 |
+
assert torch.all(focals_pixels > 0)
|
665 |
+
ray_dirs_xy = ray_dirs_xy.clone()
|
666 |
+
ray_dirs_xy[:, :2, ...] = ray_dirs_xy[:, :2, ...] / focals_pixels.unsqueeze(2).unsqueeze(3)
|
667 |
+
|
668 |
+
# depth and offsets are shaped as (b 3 h w)
|
669 |
+
if const_offset is not None:
|
670 |
+
depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear + const_offset
|
671 |
+
else:
|
672 |
+
depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear
|
673 |
+
|
674 |
+
pos = ray_dirs_xy * depth + offset
|
675 |
+
|
676 |
+
return pos
|
677 |
+
|
678 |
+
def forward(self, x,
|
679 |
+
source_cameras_view_to_world,
|
680 |
+
source_cv2wT_quat=None,
|
681 |
+
focals_pixels=None,
|
682 |
+
activate_output=True):
|
683 |
+
|
684 |
+
B = x.shape[0]
|
685 |
+
N_views = x.shape[1]
|
686 |
+
# UNet attention will reshape outputs so that there is cross-view attention
|
687 |
+
if self.cfg.model.cross_view_attention:
|
688 |
+
N_views_xa = N_views
|
689 |
+
else:
|
690 |
+
N_views_xa = 1
|
691 |
+
|
692 |
+
if self.cfg.cam_embd.embedding is not None:
|
693 |
+
cam_embedding = self.get_camera_embeddings(source_cameras_view_to_world)
|
694 |
+
assert self.cfg.cam_embd.method == "film"
|
695 |
+
film_camera_emb = cam_embedding.reshape(B*N_views, cam_embedding.shape[2])
|
696 |
+
else:
|
697 |
+
film_camera_emb = None
|
698 |
+
|
699 |
+
if self.cfg.data.category in ["hydrants", "teddybears"]:
|
700 |
+
assert focals_pixels is not None
|
701 |
+
focals_pixels = focals_pixels.reshape(B*N_views, *focals_pixels.shape[2:])
|
702 |
+
else:
|
703 |
+
assert focals_pixels is None, "Unexpected argument for non-co3d dataset"
|
704 |
+
|
705 |
+
x = x.reshape(B*N_views, *x.shape[2:])
|
706 |
+
if self.cfg.data.origin_distances:
|
707 |
+
const_offset = x[:, 3:, ...]
|
708 |
+
x = x[:, :3, ...]
|
709 |
+
else:
|
710 |
+
const_offset = None
|
711 |
+
|
712 |
+
source_cameras_view_to_world = source_cameras_view_to_world.reshape(B*N_views, *source_cameras_view_to_world.shape[2:])
|
713 |
+
x = x.contiguous(memory_format=torch.channels_last)
|
714 |
+
|
715 |
+
if self.cfg.model.network_with_offset:
|
716 |
+
|
717 |
+
split_network_outputs = self.network_with_offset(x,
|
718 |
+
film_camera_emb=film_camera_emb,
|
719 |
+
N_views_xa=N_views_xa
|
720 |
+
)
|
721 |
+
|
722 |
+
split_network_outputs = split_network_outputs.split(self.split_dimensions_with_offset, dim=1)
|
723 |
+
depth, offset, opacity, scaling, rotation, features_dc = split_network_outputs[:6]
|
724 |
+
if self.cfg.model.max_sh_degree > 0:
|
725 |
+
features_rest = split_network_outputs[6]
|
726 |
+
|
727 |
+
pos = self.get_pos_from_network_output(depth, offset, focals_pixels, const_offset=const_offset)
|
728 |
+
|
729 |
+
else:
|
730 |
+
split_network_outputs = self.network_wo_offset(x,
|
731 |
+
film_camera_emb=film_camera_emb,
|
732 |
+
N_views_xa=N_views_xa
|
733 |
+
).split(self.split_dimensions_without_offset, dim=1)
|
734 |
+
|
735 |
+
depth, opacity, scaling, rotation, features_dc = split_network_outputs[:5]
|
736 |
+
if self.cfg.model.max_sh_degree > 0:
|
737 |
+
features_rest = split_network_outputs[5]
|
738 |
+
|
739 |
+
pos = self.get_pos_from_network_output(depth, 0.0, focals_pixels, const_offset=const_offset)
|
740 |
+
|
741 |
+
if self.cfg.model.isotropic:
|
742 |
+
scaling_out = torch.cat([scaling[:, :1, ...], scaling[:, :1, ...], scaling[:, :1, ...]], dim=1)
|
743 |
+
else:
|
744 |
+
scaling_out = scaling
|
745 |
+
|
746 |
+
# Pos prediction is in camera space - compute the positions in the world space
|
747 |
+
pos = self.flatten_vector(pos)
|
748 |
+
pos = torch.cat([pos,
|
749 |
+
torch.ones((pos.shape[0], pos.shape[1], 1), device="cuda", dtype=torch.float32)
|
750 |
+
], dim=2)
|
751 |
+
pos = torch.bmm(pos, source_cameras_view_to_world)
|
752 |
+
pos = pos[:, :, :3] / (pos[:, :, 3:] + 1e-10)
|
753 |
+
|
754 |
+
out_dict = {
|
755 |
+
"xyz": pos,
|
756 |
+
"rotation": self.flatten_vector(self.rotation_activation(rotation)),
|
757 |
+
"features_dc": self.flatten_vector(features_dc).unsqueeze(2)
|
758 |
+
}
|
759 |
+
|
760 |
+
if activate_output:
|
761 |
+
out_dict["opacity"] = self.flatten_vector(self.opacity_activation(opacity))
|
762 |
+
out_dict["scaling"] = self.flatten_vector(self.scaling_activation(scaling_out))
|
763 |
+
else:
|
764 |
+
out_dict["opacity"] = self.flatten_vector(opacity)
|
765 |
+
out_dict["scaling"] = self.flatten_vector(scaling_out)
|
766 |
+
|
767 |
+
assert source_cv2wT_quat is not None
|
768 |
+
source_cv2wT_quat = source_cv2wT_quat.reshape(B*N_views, *source_cv2wT_quat.shape[2:])
|
769 |
+
out_dict["rotation"] = self.transform_rotations(out_dict["rotation"],
|
770 |
+
source_cv2wT_quat=source_cv2wT_quat)
|
771 |
+
|
772 |
+
if self.cfg.model.max_sh_degree > 0:
|
773 |
+
features_rest = self.flatten_vector(features_rest)
|
774 |
+
# Channel dimension holds SH_num * RGB(3) -> renderer expects split across RGB
|
775 |
+
# Split channel dimension B x N x C -> B x N x SH_num x 3
|
776 |
+
out_dict["features_rest"] = features_rest.reshape(*features_rest.shape[:2], -1, 3)
|
777 |
+
assert self.cfg.model.max_sh_degree == 1 # "Only accepting degree 1"
|
778 |
+
out_dict["features_rest"] = self.transform_SHs(out_dict["features_rest"],
|
779 |
+
source_cameras_view_to_world)
|
780 |
+
else:
|
781 |
+
out_dict["features_rest"] = torch.zeros((out_dict["features_dc"].shape[0],
|
782 |
+
out_dict["features_dc"].shape[1],
|
783 |
+
(self.cfg.model.max_sh_degree + 1) ** 2 - 1,
|
784 |
+
3), dtype=out_dict["features_dc"].dtype, device="cuda")
|
785 |
+
|
786 |
+
out_dict = self.multi_view_union(out_dict, B, N_views)
|
787 |
+
out_dict = self.make_contiguous(out_dict)
|
788 |
+
|
789 |
+
return out_dict
|
utils/app_utils.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from typing import Any
|
3 |
+
import rembg
|
4 |
+
import numpy as np
|
5 |
+
from torchvision import transforms
|
6 |
+
from plyfile import PlyData, PlyElement
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
from .camera_utils import get_loop_cameras
|
10 |
+
from .graphics_utils import getProjectionMatrix
|
11 |
+
from .general_utils import matrix_to_quaternion
|
12 |
+
|
13 |
+
def remove_background(image, rembg_session):
|
14 |
+
do_remove = True
|
15 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
16 |
+
do_remove = False
|
17 |
+
if do_remove:
|
18 |
+
image = rembg.remove(image, session=rembg_session)
|
19 |
+
return image
|
20 |
+
|
21 |
+
def set_white_background(image):
|
22 |
+
image = np.array(image).astype(np.float32) / 255.0
|
23 |
+
mask = image[:, :, 3:4]
|
24 |
+
image = image[:, :, :3] * mask + (1 - mask)
|
25 |
+
image = Image.fromarray((image * 255.0).astype(np.uint8))
|
26 |
+
return image
|
27 |
+
|
28 |
+
def resize_foreground(image, ratio):
|
29 |
+
image = np.array(image)
|
30 |
+
assert image.shape[-1] == 4
|
31 |
+
alpha = np.where(image[..., 3] > 0)
|
32 |
+
# modify so that cropping doesn't change the world center
|
33 |
+
y1, y2, x1, x2 = (
|
34 |
+
alpha[0].min(),
|
35 |
+
alpha[0].max(),
|
36 |
+
alpha[1].min(),
|
37 |
+
alpha[1].max(),
|
38 |
+
)
|
39 |
+
|
40 |
+
# crop the foreground
|
41 |
+
fg = image[y1: y2,
|
42 |
+
x1: x2]
|
43 |
+
# pad to square
|
44 |
+
size = max(fg.shape[0], fg.shape[1])
|
45 |
+
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
46 |
+
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
47 |
+
new_image = np.pad(
|
48 |
+
fg,
|
49 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
50 |
+
mode="constant",
|
51 |
+
constant_values=((255, 255), (255, 255), (0, 0)),
|
52 |
+
)
|
53 |
+
|
54 |
+
# compute padding according to the ratio
|
55 |
+
new_size = int(new_image.shape[0] / ratio)
|
56 |
+
# pad to size, double side
|
57 |
+
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
58 |
+
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
59 |
+
new_image = np.pad(
|
60 |
+
new_image,
|
61 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
62 |
+
mode="constant",
|
63 |
+
constant_values=((255, 255), (255, 255), (0, 0)),
|
64 |
+
)
|
65 |
+
|
66 |
+
new_image = Image.fromarray(new_image)
|
67 |
+
|
68 |
+
return new_image
|
69 |
+
|
70 |
+
def resize_to_128(img):
|
71 |
+
img = transforms.functional.resize(img, 128,
|
72 |
+
interpolation=transforms.InterpolationMode.LANCZOS)
|
73 |
+
return img
|
74 |
+
|
75 |
+
def to_tensor(img):
|
76 |
+
img = torch.tensor(img).permute(2, 0, 1) / 255.0
|
77 |
+
return img
|
78 |
+
|
79 |
+
def get_source_camera_v2w_rmo_and_quats(num_imgs_in_loop=200):
|
80 |
+
source_camera = get_loop_cameras(num_imgs_in_loop=num_imgs_in_loop)[0]
|
81 |
+
source_camera = torch.from_numpy(source_camera).transpose(0, 1).unsqueeze(0)
|
82 |
+
|
83 |
+
qs = []
|
84 |
+
for c_idx in range(source_camera.shape[0]):
|
85 |
+
qs.append(matrix_to_quaternion(source_camera[c_idx, :3, :3].transpose(0, 1)))
|
86 |
+
|
87 |
+
return source_camera.unsqueeze(0), torch.stack(qs, dim=0).unsqueeze(0)
|
88 |
+
|
89 |
+
def get_target_cameras(num_imgs_in_loop=200):
|
90 |
+
"""
|
91 |
+
Returns camera parameters for rendering a loop around the object:
|
92 |
+
world_to_view_transforms,
|
93 |
+
full_proj_transforms,
|
94 |
+
camera_centers
|
95 |
+
"""
|
96 |
+
|
97 |
+
projection_matrix = getProjectionMatrix(
|
98 |
+
znear=0.8, zfar=3.2,
|
99 |
+
fovX=49.134342641202636 * 2 * np.pi / 360,
|
100 |
+
fovY=49.134342641202636 * 2 * np.pi / 360).transpose(0,1)
|
101 |
+
|
102 |
+
target_cameras = get_loop_cameras(num_imgs_in_loop=num_imgs_in_loop,
|
103 |
+
max_elevation=np.pi/4,
|
104 |
+
elevation_freq=1.5)
|
105 |
+
world_view_transforms = []
|
106 |
+
view_world_transforms = []
|
107 |
+
camera_centers = []
|
108 |
+
|
109 |
+
for loop_camera_c2w_cmo in target_cameras:
|
110 |
+
view_world_transform = torch.from_numpy(loop_camera_c2w_cmo).transpose(0, 1)
|
111 |
+
world_view_transform = torch.from_numpy(loop_camera_c2w_cmo).inverse().transpose(0, 1)
|
112 |
+
camera_center = view_world_transform[3, :3].clone()
|
113 |
+
|
114 |
+
world_view_transforms.append(world_view_transform)
|
115 |
+
view_world_transforms.append(view_world_transform)
|
116 |
+
camera_centers.append(camera_center)
|
117 |
+
|
118 |
+
world_view_transforms = torch.stack(world_view_transforms)
|
119 |
+
view_world_transforms = torch.stack(view_world_transforms)
|
120 |
+
camera_centers = torch.stack(camera_centers)
|
121 |
+
|
122 |
+
full_proj_transforms = world_view_transforms.bmm(projection_matrix.unsqueeze(0).expand(
|
123 |
+
world_view_transforms.shape[0], 4, 4))
|
124 |
+
|
125 |
+
return world_view_transforms, full_proj_transforms, camera_centers
|
126 |
+
|
127 |
+
def construct_list_of_attributes():
|
128 |
+
# taken from gaussian splatting repo.
|
129 |
+
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
|
130 |
+
# All channels except the 3 DC
|
131 |
+
# 3 channels for DC
|
132 |
+
for i in range(3):
|
133 |
+
l.append('f_dc_{}'.format(i))
|
134 |
+
# 9 channels for SH order 1
|
135 |
+
for i in range(9):
|
136 |
+
l.append('f_rest_{}'.format(i))
|
137 |
+
l.append('opacity')
|
138 |
+
for i in range(3):
|
139 |
+
l.append('scale_{}'.format(i))
|
140 |
+
for i in range(4):
|
141 |
+
l.append('rot_{}'.format(i))
|
142 |
+
return l
|
143 |
+
|
144 |
+
def export_to_obj(reconstruction, ply_out_path):
|
145 |
+
"""
|
146 |
+
Args:
|
147 |
+
reconstruction: dict with xyz, opacity, features dc, etc with leading batch size
|
148 |
+
ply_out_path: file path where to save the output
|
149 |
+
"""
|
150 |
+
os.makedirs(os.path.dirname(ply_out_path), exist_ok=True)
|
151 |
+
|
152 |
+
for k, v in reconstruction.items():
|
153 |
+
# check dimensions
|
154 |
+
if k not in ["features_dc", "features_rest"]:
|
155 |
+
assert len(v.shape) == 3, "Unexpected size for {}".format(k)
|
156 |
+
else:
|
157 |
+
assert len(v.shape) == 4, "Unexpected size for {}".format(k)
|
158 |
+
assert v.shape[0] == 1, "Expected batch size to be 0"
|
159 |
+
reconstruction[k] = v[0]
|
160 |
+
|
161 |
+
xyz = reconstruction["xyz"].detach().cpu().numpy()
|
162 |
+
normals = np.zeros_like(xyz)
|
163 |
+
f_dc = reconstruction["features_dc"].detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
164 |
+
f_rest = reconstruction["features_rest"].detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
165 |
+
opacities = reconstruction["opacity"].detach().cpu().numpy()
|
166 |
+
scale = reconstruction["scaling"].detach().cpu().numpy()
|
167 |
+
rotation = reconstruction["rotation"].detach().cpu().numpy()
|
168 |
+
|
169 |
+
dtype_full = [(attribute, 'f4') for attribute in construct_list_of_attributes()]
|
170 |
+
|
171 |
+
elements = np.empty(xyz.shape[0], dtype=dtype_full)
|
172 |
+
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
|
173 |
+
elements[:] = list(map(tuple, attributes))
|
174 |
+
el = PlyElement.describe(elements, 'vertex')
|
175 |
+
PlyData([el]).write(ply_out_path)
|
utils/camera_utils.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def get_loop_cameras(num_imgs_in_loop, radius=2.0,
|
4 |
+
max_elevation=np.pi/6, elevation_freq=0.5,
|
5 |
+
azimuth_freq=2.0):
|
6 |
+
|
7 |
+
all_cameras_c2w_cmo = []
|
8 |
+
|
9 |
+
for i in range(num_imgs_in_loop):
|
10 |
+
azimuth_angle = np.pi * 2 * azimuth_freq * i / num_imgs_in_loop
|
11 |
+
elevation_angle = max_elevation * np.sin(
|
12 |
+
np.pi * i * 2 * elevation_freq / num_imgs_in_loop)
|
13 |
+
x = np.cos(azimuth_angle) * radius * np.cos(elevation_angle)
|
14 |
+
y = np.sin(azimuth_angle) * radius * np.cos(elevation_angle)
|
15 |
+
z = np.sin(elevation_angle) * radius
|
16 |
+
|
17 |
+
camera_T_c2w = np.array([x, y, z], dtype=np.float32)
|
18 |
+
|
19 |
+
# in COLMAP / OpenCV convention: z away from camera, y down, x right
|
20 |
+
camera_z = - camera_T_c2w / radius
|
21 |
+
up = np.array([0, 0, -1], dtype=np.float32)
|
22 |
+
camera_x = np.cross(up, camera_z)
|
23 |
+
camera_x = camera_x / np.linalg.norm(camera_x)
|
24 |
+
camera_y = np.cross(camera_z, camera_x)
|
25 |
+
|
26 |
+
camera_c2w_cmo = np.hstack([camera_x[:, None],
|
27 |
+
camera_y[:, None],
|
28 |
+
camera_z[:, None],
|
29 |
+
camera_T_c2w[:, None]])
|
30 |
+
camera_c2w_cmo = np.vstack([camera_c2w_cmo, np.array([0, 0, 0, 1], dtype=np.float32)[None, :]])
|
31 |
+
|
32 |
+
all_cameras_c2w_cmo.append(camera_c2w_cmo)
|
33 |
+
|
34 |
+
return all_cameras_c2w_cmo
|
utils/general_utils.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
|
4 |
+
"""
|
5 |
+
From Pytorch3d
|
6 |
+
Multiply two quaternions.
|
7 |
+
Usual torch rules for broadcasting apply.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
a: Quaternions as tensor of shape (..., 4), real part first.
|
11 |
+
b: Quaternions as tensor of shape (..., 4), real part first.
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
The product of a and b, a tensor of quaternions shape (..., 4).
|
15 |
+
"""
|
16 |
+
aw, ax, ay, az = torch.unbind(a, -1)
|
17 |
+
bw, bx, by, bz = torch.unbind(b, -1)
|
18 |
+
ow = aw * bw - ax * bx - ay * by - az * bz
|
19 |
+
ox = aw * bx + ax * bw + ay * bz - az * by
|
20 |
+
oy = aw * by - ax * bz + ay * bw + az * bx
|
21 |
+
oz = aw * bz + ax * by - ay * bx + az * bw
|
22 |
+
return torch.stack((ow, ox, oy, oz), -1)
|
23 |
+
|
24 |
+
# Written by Stan Szymanowicz 2023
|
25 |
+
def matrix_to_quaternion(M: torch.Tensor) -> torch.Tensor:
|
26 |
+
"""
|
27 |
+
Matrix-to-quaternion conversion method. Equation taken from
|
28 |
+
https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
|
29 |
+
Args:
|
30 |
+
M: rotation matrices, (3 x 3)
|
31 |
+
Returns:
|
32 |
+
q: quaternion of shape (4)
|
33 |
+
"""
|
34 |
+
tr = 1 + M[ 0, 0] + M[ 1, 1] + M[ 2, 2]
|
35 |
+
|
36 |
+
if tr > 0:
|
37 |
+
r = torch.sqrt(tr) / 2.0
|
38 |
+
x = ( M[ 2, 1] - M[ 1, 2] ) / ( 4 * r )
|
39 |
+
y = ( M[ 0, 2] - M[ 2, 0] ) / ( 4 * r )
|
40 |
+
z = ( M[ 1, 0] - M[ 0, 1] ) / ( 4 * r )
|
41 |
+
elif ( M[ 0, 0] > M[ 1, 1]) and (M[ 0, 0] > M[ 2, 2]):
|
42 |
+
S = torch.sqrt(1.0 + M[ 0, 0] - M[ 1, 1] - M[ 2, 2]) * 2 # S=4*qx
|
43 |
+
r = (M[ 2, 1] - M[ 1, 2]) / S
|
44 |
+
x = 0.25 * S
|
45 |
+
y = (M[ 0, 1] + M[ 1, 0]) / S
|
46 |
+
z = (M[ 0, 2] + M[ 2, 0]) / S
|
47 |
+
elif M[ 1, 1] > M[ 2, 2]:
|
48 |
+
S = torch.sqrt(1.0 + M[ 1, 1] - M[ 0, 0] - M[ 2, 2]) * 2 # S=4*qy
|
49 |
+
r = (M[ 0, 2] - M[ 2, 0]) / S
|
50 |
+
x = (M[ 0, 1] + M[ 1, 0]) / S
|
51 |
+
y = 0.25 * S
|
52 |
+
z = (M[ 1, 2] + M[ 2, 1]) / S
|
53 |
+
else:
|
54 |
+
S = torch.sqrt(1.0 + M[ 2, 2] - M[ 0, 0] - M[ 1, 1]) * 2 # S=4*qz
|
55 |
+
r = (M[ 1, 0] - M[ 0, 1]) / S
|
56 |
+
x = (M[ 0, 2] + M[ 2, 0]) / S
|
57 |
+
y = (M[ 1, 2] + M[ 2, 1]) / S
|
58 |
+
z = 0.25 * S
|
59 |
+
|
60 |
+
return torch.stack([r, x, y, z], dim=-1)
|
utils/graphics_utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
|
4 |
+
def getProjectionMatrix(znear, zfar, fovX, fovY):
|
5 |
+
tanHalfFovY = math.tan((fovY / 2))
|
6 |
+
tanHalfFovX = math.tan((fovX / 2))
|
7 |
+
|
8 |
+
top = tanHalfFovY * znear
|
9 |
+
bottom = -top
|
10 |
+
right = tanHalfFovX * znear
|
11 |
+
left = -right
|
12 |
+
|
13 |
+
P = torch.zeros(4, 4)
|
14 |
+
|
15 |
+
z_sign = 1.0
|
16 |
+
|
17 |
+
P[0, 0] = 2.0 * znear / (right - left)
|
18 |
+
P[1, 1] = 2.0 * znear / (top - bottom)
|
19 |
+
P[0, 2] = (right + left) / (right - left)
|
20 |
+
P[1, 2] = (top + bottom) / (top - bottom)
|
21 |
+
P[3, 2] = z_sign
|
22 |
+
P[2, 2] = z_sign * zfar / (zfar - znear)
|
23 |
+
P[2, 3] = -(zfar * znear) / (zfar - znear)
|
24 |
+
return P
|
25 |
+
|
26 |
+
def fov2focal(fov, pixels):
|
27 |
+
return pixels / (2 * math.tan(fov / 2))
|
28 |
+
|
29 |
+
def focal2fov(focal, pixels):
|
30 |
+
return 2*math.atan(pixels/(2*focal))
|