Spaces:
Sleeping
Sleeping
import time | |
import streamlit as st | |
from transformers import pipeline | |
# Model to load | |
MODEL_TO_LOAD = "swastik-kapture/offenseval-xlmr" | |
TOKENIZER = "xlm-roberta-base" | |
# create classification pipeline | |
trained_model = pipeline("text-classification", model=MODEL_TO_LOAD, tokenizer=TOKENIZER) | |
# Streamlit App | |
def main(): | |
# create a session state for conversation history | |
if 'conversation_history' not in st.session_state: | |
st.session_state.conversation_history = [] | |
# streamlit title | |
st.title("OffensEval: Profanity Detection") | |
# user message | |
user_message = st.chat_input("Say something") | |
# if user input is present try to predict the outcome | |
if user_message: | |
# append user message to history | |
st.session_state.conversation_history.append(('user', user_message, time.time())) | |
# get predicted output | |
output = trained_model.predict(user_message) | |
# get predictied label and score | |
label = output[0]['label'] | |
score = output[0]['score'] | |
# default color | |
color = "white" | |
# get the color based on label | |
if label == "LABEL_0": | |
color = "green" | |
label = "No Offense" | |
elif label == "LABEL_1": | |
color = "red" | |
label = "Offensive" | |
st.session_state.conversation_history.append(('assistant', f"<div style='background-color: {color}; width: auto; height: 50px;'>Label: {label}; Score: {score:.2f}</div>", time.time())) | |
# Display chat history | |
for sender, message, timestamp in st.session_state.conversation_history: | |
with st.chat_message(sender): | |
st.write(message, unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() | |