import time import streamlit as st from transformers import pipeline # Model to load MODEL_TO_LOAD = "swastik-kapture/offenseval-xlmr" TOKENIZER = "xlm-roberta-base" # create classification pipeline trained_model = pipeline("text-classification", model=MODEL_TO_LOAD, tokenizer=TOKENIZER) # Streamlit App def main(): # create a session state for conversation history if 'conversation_history' not in st.session_state: st.session_state.conversation_history = [] # streamlit title st.title("OffensEval: Profanity Detection") # user message user_message = st.chat_input("Say something") # if user input is present try to predict the outcome if user_message: # append user message to history st.session_state.conversation_history.append(('user', user_message, time.time())) # get predicted output output = trained_model.predict(user_message) # get predictied label and score label = output[0]['label'] score = output[0]['score'] # default color color = "white" # get the color based on label if label == "LABEL_0": color = "green" label = "No Offense" elif label == "LABEL_1": color = "red" label = "Offensive" st.session_state.conversation_history.append(('assistant', f"
Label: {label}; Score: {score:.2f}
", time.time())) # Display chat history for sender, message, timestamp in st.session_state.conversation_history: with st.chat_message(sender): st.write(message, unsafe_allow_html=True) if __name__ == "__main__": main()