Spaces:
Running
on
Zero
Running
on
Zero
''' | |
Adapted from | |
https://github.com/openai/sparse_autoencoder/blob/main/sparse_autoencoder/model.py | |
''' | |
import torch | |
import torch.nn as nn | |
import os | |
import json | |
import spaces | |
import logging | |
class SparseAutoencoder(nn.Module): | |
""" | |
Top-K Autoencoder with sparse kernels. Implements: | |
latents = relu(topk(encoder(x - pre_bias) + latent_bias)) | |
recons = decoder(latents) + pre_bias | |
""" | |
def __init__( | |
self, | |
n_dirs_local: int, | |
d_model: int, | |
k: int, | |
auxk: int | None, | |
dead_steps_threshold: int, | |
): | |
super().__init__() | |
self.n_dirs_local = n_dirs_local | |
self.d_model = d_model | |
self.k = k | |
self.auxk = auxk | |
self.dead_steps_threshold = dead_steps_threshold | |
self.encoder = nn.Linear(d_model, n_dirs_local, bias=False) | |
self.decoder = nn.Linear(n_dirs_local, d_model, bias=False) | |
self.pre_bias = nn.Parameter(torch.zeros(d_model)) | |
self.latent_bias = nn.Parameter(torch.zeros(n_dirs_local)) | |
self.stats_last_nonzero: torch.Tensor | |
self.register_buffer("stats_last_nonzero", torch.zeros(n_dirs_local, dtype=torch.long)) | |
## initialization | |
# "tied" init | |
self.decoder.weight.data = self.encoder.weight.data.T.clone() | |
# store decoder in column major layout for kernel | |
self.decoder.weight.data = self.decoder.weight.data.T.contiguous().T | |
unit_norm_decoder_(self) | |
def auxk_mask_fn(self, x): | |
dead_mask = self.stats_last_nonzero > dead_steps_threshold | |
x.data *= dead_mask # inplace to save memory | |
return x | |
def save_to_disk(self, path: str): | |
PATH_TO_CFG = 'config.json' | |
PATH_TO_WEIGHTS = 'state_dict.pth' | |
cfg = { | |
"n_dirs_local": self.n_dirs_local, | |
"d_model": self.d_model, | |
"k": self.k, | |
"auxk": self.auxk, | |
"dead_steps_threshold": self.dead_steps_threshold, | |
} | |
os.makedirs(path, exist_ok=True) | |
with open(os.path.join(path, PATH_TO_CFG), 'w') as f: | |
json.dump(cfg, f) | |
torch.save({ | |
"state_dict": self.state_dict(), | |
}, os.path.join(path, PATH_TO_WEIGHTS)) | |
def load_from_disk(cls, path: str): | |
PATH_TO_CFG = 'config.json' | |
PATH_TO_WEIGHTS = 'state_dict.pth' | |
with open(os.path.join(path, PATH_TO_CFG), 'r') as f: | |
cfg = json.load(f) | |
ae = cls( | |
n_dirs_local=cfg["n_dirs_local"], | |
d_model=cfg["d_model"], | |
k=cfg["k"], | |
auxk=cfg["auxk"], | |
dead_steps_threshold=cfg["dead_steps_threshold"], | |
) | |
state_dict = torch.load(os.path.join(path, PATH_TO_WEIGHTS))["state_dict"] | |
ae.load_state_dict(state_dict) | |
return ae | |
def n_dirs(self): | |
return self.n_dirs_local | |
def encode(self, x): | |
x = x.to('cuda') - self.pre_bias | |
latents_pre_act = self.encoder(x) + self.latent_bias | |
vals, inds = torch.topk( | |
latents_pre_act, | |
k=self.k, | |
dim=-1 | |
) | |
latents = torch.zeros_like(latents_pre_act) | |
latents.scatter_(-1, inds, torch.relu(vals)) | |
return latents | |
def forward(self, x): | |
x = x - self.pre_bias | |
latents_pre_act = self.encoder(x) + self.latent_bias | |
vals, inds = torch.topk( | |
latents_pre_act, | |
k=self.k, | |
dim=-1 | |
) | |
## set num nonzero stat ## | |
tmp = torch.zeros_like(self.stats_last_nonzero) | |
tmp.scatter_add_( | |
0, | |
inds.reshape(-1), | |
(vals > 1e-3).to(tmp.dtype).reshape(-1), | |
) | |
self.stats_last_nonzero *= 1 - tmp.clamp(max=1) | |
self.stats_last_nonzero += 1 | |
## end stats ## | |
## auxk | |
if self.auxk is not None: # for auxk | |
# IMPORTANT: has to go after stats update! | |
# WARN: auxk_mask_fn can mutate latents_pre_act! | |
auxk_vals, auxk_inds = torch.topk( | |
self.auxk_mask_fn(latents_pre_act), | |
k=self.auxk, | |
dim=-1 | |
) | |
else: | |
auxk_inds = None | |
auxk_vals = None | |
## end auxk | |
vals = torch.relu(vals) | |
if auxk_vals is not None: | |
auxk_vals = torch.relu(auxk_vals) | |
rows, cols = latents_pre_act.size() | |
row_indices = torch.arange(rows).unsqueeze(1).expand(-1, self.k).reshape(-1) | |
vals = vals.reshape(-1) | |
inds = inds.reshape(-1) | |
indices = torch.stack([row_indices.to(inds.device), inds]) | |
sparse_tensor = torch.sparse_coo_tensor(indices, vals, torch.Size([rows, cols])) | |
recons = torch.sparse.mm(sparse_tensor, self.decoder.weight.T) + self.pre_bias | |
return recons, { | |
"inds": inds, | |
"vals": vals, | |
"auxk_inds": auxk_inds, | |
"auxk_vals": auxk_vals, | |
} | |
def decode_sparse(self, inds, vals): | |
rows, cols = inds.shape[0], self.n_dirs | |
row_indices = torch.arange(rows).unsqueeze(1).expand(-1, inds.shape[1]).reshape(-1) | |
vals = vals.reshape(-1) | |
inds = inds.reshape(-1) | |
indices = torch.stack([row_indices.to(inds.device), inds]) | |
sparse_tensor = torch.sparse_coo_tensor(indices, vals, torch.Size([rows, cols])) | |
recons = torch.sparse.mm(sparse_tensor, self.decoder.weight.T) + self.pre_bias | |
return recons | |
def device(self): | |
return next(self.parameters()).device | |
def unit_norm_decoder_(autoencoder: SparseAutoencoder) -> None: | |
""" | |
Unit normalize the decoder weights of an autoencoder. | |
""" | |
autoencoder.decoder.weight.data /= autoencoder.decoder.weight.data.norm(dim=0) | |
def unit_norm_decoder_grad_adjustment_(autoencoder) -> None: | |
"""project out gradient information parallel to the dictionary vectors - assumes that the decoder is already unit normed""" | |
assert autoencoder.decoder.weight.grad is not None | |
autoencoder.decoder.weight.grad +=\ | |
torch.einsum("bn,bn->n", autoencoder.decoder.weight.data, autoencoder.decoder.weight.grad) *\ | |
autoencoder.decoder.weight.data * -1 |