Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,315 Bytes
8cd00a9 c049ca4 d04c320 8cd00a9 46611c9 8cd00a9 79ab360 8cd00a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
'''
Adapted from
https://github.com/openai/sparse_autoencoder/blob/main/sparse_autoencoder/model.py
'''
import torch
import torch.nn as nn
import os
import json
import spaces
import logging
class SparseAutoencoder(nn.Module):
"""
Top-K Autoencoder with sparse kernels. Implements:
latents = relu(topk(encoder(x - pre_bias) + latent_bias))
recons = decoder(latents) + pre_bias
"""
def __init__(
self,
n_dirs_local: int,
d_model: int,
k: int,
auxk: int | None,
dead_steps_threshold: int,
):
super().__init__()
self.n_dirs_local = n_dirs_local
self.d_model = d_model
self.k = k
self.auxk = auxk
self.dead_steps_threshold = dead_steps_threshold
self.encoder = nn.Linear(d_model, n_dirs_local, bias=False)
self.decoder = nn.Linear(n_dirs_local, d_model, bias=False)
self.pre_bias = nn.Parameter(torch.zeros(d_model))
self.latent_bias = nn.Parameter(torch.zeros(n_dirs_local))
self.stats_last_nonzero: torch.Tensor
self.register_buffer("stats_last_nonzero", torch.zeros(n_dirs_local, dtype=torch.long))
## initialization
# "tied" init
self.decoder.weight.data = self.encoder.weight.data.T.clone()
# store decoder in column major layout for kernel
self.decoder.weight.data = self.decoder.weight.data.T.contiguous().T
unit_norm_decoder_(self)
def auxk_mask_fn(self, x):
dead_mask = self.stats_last_nonzero > dead_steps_threshold
x.data *= dead_mask # inplace to save memory
return x
def save_to_disk(self, path: str):
PATH_TO_CFG = 'config.json'
PATH_TO_WEIGHTS = 'state_dict.pth'
cfg = {
"n_dirs_local": self.n_dirs_local,
"d_model": self.d_model,
"k": self.k,
"auxk": self.auxk,
"dead_steps_threshold": self.dead_steps_threshold,
}
os.makedirs(path, exist_ok=True)
with open(os.path.join(path, PATH_TO_CFG), 'w') as f:
json.dump(cfg, f)
torch.save({
"state_dict": self.state_dict(),
}, os.path.join(path, PATH_TO_WEIGHTS))
@classmethod
def load_from_disk(cls, path: str):
PATH_TO_CFG = 'config.json'
PATH_TO_WEIGHTS = 'state_dict.pth'
with open(os.path.join(path, PATH_TO_CFG), 'r') as f:
cfg = json.load(f)
ae = cls(
n_dirs_local=cfg["n_dirs_local"],
d_model=cfg["d_model"],
k=cfg["k"],
auxk=cfg["auxk"],
dead_steps_threshold=cfg["dead_steps_threshold"],
)
state_dict = torch.load(os.path.join(path, PATH_TO_WEIGHTS))["state_dict"]
ae.load_state_dict(state_dict)
return ae
@property
def n_dirs(self):
return self.n_dirs_local
def encode(self, x):
x = x.to('cuda') - self.pre_bias
latents_pre_act = self.encoder(x) + self.latent_bias
vals, inds = torch.topk(
latents_pre_act,
k=self.k,
dim=-1
)
latents = torch.zeros_like(latents_pre_act)
latents.scatter_(-1, inds, torch.relu(vals))
return latents
def forward(self, x):
x = x - self.pre_bias
latents_pre_act = self.encoder(x) + self.latent_bias
vals, inds = torch.topk(
latents_pre_act,
k=self.k,
dim=-1
)
## set num nonzero stat ##
tmp = torch.zeros_like(self.stats_last_nonzero)
tmp.scatter_add_(
0,
inds.reshape(-1),
(vals > 1e-3).to(tmp.dtype).reshape(-1),
)
self.stats_last_nonzero *= 1 - tmp.clamp(max=1)
self.stats_last_nonzero += 1
## end stats ##
## auxk
if self.auxk is not None: # for auxk
# IMPORTANT: has to go after stats update!
# WARN: auxk_mask_fn can mutate latents_pre_act!
auxk_vals, auxk_inds = torch.topk(
self.auxk_mask_fn(latents_pre_act),
k=self.auxk,
dim=-1
)
else:
auxk_inds = None
auxk_vals = None
## end auxk
vals = torch.relu(vals)
if auxk_vals is not None:
auxk_vals = torch.relu(auxk_vals)
rows, cols = latents_pre_act.size()
row_indices = torch.arange(rows).unsqueeze(1).expand(-1, self.k).reshape(-1)
vals = vals.reshape(-1)
inds = inds.reshape(-1)
indices = torch.stack([row_indices.to(inds.device), inds])
sparse_tensor = torch.sparse_coo_tensor(indices, vals, torch.Size([rows, cols]))
recons = torch.sparse.mm(sparse_tensor, self.decoder.weight.T) + self.pre_bias
return recons, {
"inds": inds,
"vals": vals,
"auxk_inds": auxk_inds,
"auxk_vals": auxk_vals,
}
def decode_sparse(self, inds, vals):
rows, cols = inds.shape[0], self.n_dirs
row_indices = torch.arange(rows).unsqueeze(1).expand(-1, inds.shape[1]).reshape(-1)
vals = vals.reshape(-1)
inds = inds.reshape(-1)
indices = torch.stack([row_indices.to(inds.device), inds])
sparse_tensor = torch.sparse_coo_tensor(indices, vals, torch.Size([rows, cols]))
recons = torch.sparse.mm(sparse_tensor, self.decoder.weight.T) + self.pre_bias
return recons
@property
def device(self):
return next(self.parameters()).device
def unit_norm_decoder_(autoencoder: SparseAutoencoder) -> None:
"""
Unit normalize the decoder weights of an autoencoder.
"""
autoencoder.decoder.weight.data /= autoencoder.decoder.weight.data.norm(dim=0)
def unit_norm_decoder_grad_adjustment_(autoencoder) -> None:
"""project out gradient information parallel to the dictionary vectors - assumes that the decoder is already unit normed"""
assert autoencoder.decoder.weight.grad is not None
autoencoder.decoder.weight.grad +=\
torch.einsum("bn,bn->n", autoencoder.decoder.weight.data, autoencoder.decoder.weight.grad) *\
autoencoder.decoder.weight.data * -1 |