File size: 10,490 Bytes
5bfdfae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import time
import gradio as gr
from huggingface_hub import snapshot_download
import os
import zipfile
from PIL import Image, UnidentifiedImageError
from transformers import AutoProcessor, CLIPModel
from vector_db.vector_db_client import VectorDB
from tcvectordb.model.document import Document
import uuid
import traceback
import numpy as np 
# 生成随机的 UUID
LOCAL_MODEL_PATH = "download_model.local_model_path"
MODEL_NAME = "download_model.model_name"
LOCAL_GRAPH_PATH="graph_upload.local_graph_path"
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
init_css="""
            <style>
                .equal-height-row {
                    display: flex;
                }
                .equal-height-column {
                    flex: 1;
                    display: flex;
                    flex-direction: column;
                }
                .equal-height-column > * {
                    flex: 1;
                }
            </style>
            """
class Initial_and_Upload:

    def __init__(self, config,vdb: VectorDB):
        self.vdb = vdb
        self.model_name = config.get(MODEL_NAME)
        self.local_model_path = config.get(LOCAL_MODEL_PATH)
        self.local_graph_path=config.get(LOCAL_GRAPH_PATH)
        self.model_cache_directory = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), self.local_model_path, self.model_name)
        self.graph_cache_directory = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), self.local_graph_path)

    def initial_model(self):
        model = CLIPModel.from_pretrained(self.model_cache_directory)
        processor = AutoProcessor.from_pretrained(self.model_cache_directory)
        return model,processor
    
    def _download_model(self, model_name, progress=gr.Progress()):
        """
        下载指定的Hugging Face模型并保存在指定位置。

        参数:
        model_name (str): 模型在Hugging Face上的名字。
        save_directory (str): 模型文件保存的位置。
        """
 

        os.environ['TRANSFORMERS_CACHE'] = self.model_cache_directory
        
        # 创建保存目录(如果不存在)
        if not os.path.exists(self.model_cache_directory):
            os.makedirs(self.model_cache_directory)
        text = f"[正在尝试下载] 模型 {model_name},因为涉及到模型相关的多个文件下载,进度仅在后台显示。\n"
        progress(0.5, desc=text)
        try:
            # 下载模型
            snapshot_download(
                repo_id=model_name,
                local_dir=self.model_cache_directory,
                local_dir_use_symlinks=False,
            )
            
            progress(1, f"模型 {model_name} 已下载并保存在 {self.model_cache_directory}")
            text += f"模型 {model_name} 已下载并保存在 {self.model_cache_directory}"
            
            time.sleep(0.3)
            return text
        except Exception as e:
            text += f"[下载失败] 失败原因:{e}"
            return text

    def _process_image(self, image_path,emb_model,processor):
        """
        处理单个图片文件,将其转换为向量。

        参数:
        image_path (str): 图片文件的路径。

        返回:
        torch.Tensor: 图片的向量表示。
        """
        
        image = Image.open(image_path)
        # image.verify()  # 验证图片是否有效
        inputs = processor(images=image, return_tensors="pt")
        image_features = emb_model.get_image_features(**inputs)
        return image_features

    def _handle_upload(self, file, progress=gr.Progress()):
        """
        处理上传的文件,识别是图片还是ZIP压缩包,并将图片转换为向量。

        参数:
        file (file): 上传的文件。

        返回:
        str: 文件类型和处理结果。
        """
        output_text = ""
        image_vectors = []
        if not os.path.exists(self.model_cache_directory):
            output_text += f"缓存目录 {self.model_cache_directory} 不存在,无法初始化模型。"
        else:
            model, processor = self.initial_model()
            collection = self.vdb.get_collection()
            
            if zipfile.is_zipfile(file.name):
                with zipfile.ZipFile(file.name, 'r') as zip_ref:
                    zip_ref.extractall(self.local_graph_path)
                    image_files = [file_name for file_name in zip_ref.namelist() if file_name.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')) and not file_name.startswith('__MACOSX') and not file_name.startswith('._')]
                    
                    total_files = len(image_files)
                    for i, file_name in enumerate(image_files):
                        image_path = os.path.join(self.local_graph_path, file_name)
                        try:
                            image_vector = self._process_image(image_path, model, processor).squeeze().tolist()  # 转换为一维列表
                            random_uuid = str(uuid.uuid4())  # 转换为字符串
                            collection.upsert(documents=[Document(id=random_uuid, vector=image_vector, local_graph_path=image_path)], build_index=True)
                            output_text += f"处理图片: {file_name}\n"
                        except UnidentifiedImageError:
                            output_text += f"无法识别图片文件: {file_name}\n"
                        
                        # 更新进度
                        progress((i + 1) / total_files)
                    
                output_text += "上传的是ZIP压缩包,已解压缩并处理所有图片。"
            else:
                try:
                    # 保存单张图片到指定文件夹
                    image_path = os.path.join(self.graph_cache_directory, os.path.basename(file.name))
                    with open(file.name, "rb") as f_src:
                        with open(image_path, "wb") as f_dst:
                            f_dst.write(f_src.read())
                    
                    image_vector = self._process_image(image_path, model, processor).squeeze().tolist()  # 转换为一维列表
                    random_uuid = str(uuid.uuid4())  # 转换为字符串
                    collection.upsert(documents=[Document(id=random_uuid, vector=image_vector, local_graph_path=image_path)], build_index=True)
                    output_text += "上传的是图片文件,并已处理。\n"
                    
                    # 更新进度
                    progress(1.0)
                except (IOError, SyntaxError) as e:
                    output_text += f"无法识别文件类型:{e}\n"

        # 返回处理结果和图片向量
        return output_text, image_vectors
    def _initialize_vector_db(self, progress=gr.Progress()):
        """
        初始化向量数据库。

        返回:
        str: 初始化结果。
        """
        output_text = f"[正在尝试连接] VectorDB {self.vdb.address}\n"
        progress(0, desc=output_text)
        try:
            client = self.vdb.create_client()
            client.list_databases()
            progress(0.05, f"[连接成功] VectorDB {self.vdb.address}\n")
            output_text += f"[连接成功] VectorDB {self.vdb.address}\n"
            client.close()

            progress(0.1, f"[正在初始化] ai database '{self.vdb.db_name}'\n")
            output_text += f"[正在初始化] ai database '{self.vdb.db_name}'\n"
            self.vdb.init_database()
            progress(0.3, f"[初始化完成] ai database '{self.vdb.db_name}'\n")
            output_text += f"[初始化完成] ai database '{self.vdb.db_name}'\n"

            progress(0.5, f"[正在初始化] ai collection '{self.vdb.ai_graph_emb_collection}'\n")
            output_text += f"[正在初始化] ai collection '{self.vdb.ai_graph_emb_collection}'\n"
            self.vdb.init_graph_collection()
            progress(0.9, f"[初始化完成] ai collection '{self.vdb.ai_graph_emb_collection}'\n")
            output_text += f"[初始化完成] ai collection '{self.vdb.ai_graph_emb_collection}'\n"

            progress(1, f"您可以去图片上传栏目上传图片或ZIP压缩包,然后进一步进行[图片搜索]")
            output_text += f"您可以去图片上传栏目上传图片或ZIP压缩包,然后进一步进行[图片搜索]"

            time.sleep(0.3)
        except Exception as e:
            output_text += f"[数据库访问失败] 失败原因:{e}"
            error_trace = traceback.format_exc()
            print(error_trace)
        return output_text

    def get_init_panel(self):
        with gr.Blocks() as demo:
            gr.HTML(init_css)
            with gr.Row():
                
                with gr.Column():
                    model_name_input = gr.Textbox(lines=1, label="模型名称", placeholder="请输入Hugging Face模型名称...", value=self.model_name)
                    output = gr.Textbox(lines=10, label="下载进度", placeholder="下载进度将在这里显示...")
                    init_button = gr.Button("开始下载模型")

                    init_button.click(
                        fn=self._download_model,
                        inputs=[model_name_input],
                        outputs=output
                    )
                with gr.Column():
                    db_init_output = gr.Textbox(lines=14.5, label="数据库初始化结果", placeholder="数据库初始化结果将在这里显示...")
                    db_init_button = gr.Button("初始化向量数据库")

                    db_init_button.click(
                        fn=self._initialize_vector_db,
                        inputs=[],
                        outputs=db_init_output
                    )
            with gr.Row():
                    upload_file = gr.File(label="上传图片或ZIP压缩包")
            with gr.Row():
                    upload_output = gr.Textbox(lines=10, label="上传结果", placeholder="上传结果将在这里显示...")
            with gr.Row():
                    upload_button = gr.Button("上传文件")

                    upload_button.click(
                        fn=self._handle_upload,
                        inputs=[upload_file],
                        outputs=[upload_output, gr.State()]
                    )

        return demo