Spaces:
Runtime error
Runtime error
qcloud
commited on
Commit
·
5bfdfae
1
Parent(s):
d76fd60
- app.py +30 -0
- conf/config.ini +18 -0
- graphs/.DS_Store +0 -0
- models/.DS_Store +0 -0
- pages/__init__.py +0 -0
- pages/__pycache__/__init__.cpython-311.pyc +0 -0
- pages/__pycache__/__init__.cpython-312.pyc +0 -0
- pages/__pycache__/chat.cpython-311.pyc +0 -0
- pages/__pycache__/chat_llm.cpython-311.pyc +0 -0
- pages/__pycache__/chat_search.cpython-311.pyc +0 -0
- pages/__pycache__/chat_search.cpython-312.pyc +0 -0
- pages/__pycache__/file_upload.cpython-311.pyc +0 -0
- pages/__pycache__/init_knowledge.cpython-311.pyc +0 -0
- pages/__pycache__/initial_and_upload.cpython-312.pyc +0 -0
- pages/__pycache__/knowledge.cpython-311.pyc +0 -0
- pages/__pycache__/knowledge_store.cpython-311.pyc +0 -0
- pages/__pycache__/main_page.cpython-311.pyc +0 -0
- pages/__pycache__/main_page.cpython-312.pyc +0 -0
- pages/chat_search.py +94 -0
- pages/initial_and_upload.py +232 -0
- pages/main_page.py +41 -0
- requirements.txt +9 -0
- vector_db/__init__.py +0 -0
- vector_db/__pycache__/__init__.cpython-311.pyc +0 -0
- vector_db/__pycache__/__init__.cpython-312.pyc +0 -0
- vector_db/__pycache__/vector_db_client.cpython-311.pyc +0 -0
- vector_db/__pycache__/vector_db_client.cpython-312.pyc +0 -0
- vector_db/vector_db_client.py +63 -0
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
|
3 |
+
from pages.main_page import init_pages
|
4 |
+
from vector_db.vector_db_client import VectorDB
|
5 |
+
import configparser
|
6 |
+
|
7 |
+
CONFIG_MAP = {}
|
8 |
+
CONFIG_FILE = "conf/config.ini"
|
9 |
+
|
10 |
+
|
11 |
+
def init_config():
|
12 |
+
print(f"init configs {CONFIG_FILE}")
|
13 |
+
if not os.path.exists(CONFIG_FILE):
|
14 |
+
raise FileNotFoundError(f'The config file {CONFIG_FILE} not found.')
|
15 |
+
|
16 |
+
conf = configparser.ConfigParser()
|
17 |
+
conf.read(CONFIG_FILE, encoding="UTF-8")
|
18 |
+
|
19 |
+
for selection in conf.sections():
|
20 |
+
for k, v in conf.items(selection):
|
21 |
+
CONFIG_MAP[f'{selection}.{k}'] = v
|
22 |
+
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
init_config()
|
26 |
+
vdb = VectorDB(CONFIG_MAP)
|
27 |
+
|
28 |
+
server_name = CONFIG_MAP.get('server.name')
|
29 |
+
server_port = int(CONFIG_MAP.get('server.port'))
|
30 |
+
init_pages(vdb, server_name, server_port,CONFIG_MAP)
|
conf/config.ini
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
[vector_db]
|
3 |
+
address=http://lb-ozz7dtn0-l7dqtav6xoyir4bm.clb.ap-guangzhou.tencentclb.com:10000
|
4 |
+
key=6uwifScRaDLNND2970YKH4uIHe3eZZn37hYu3FN2
|
5 |
+
ai_db=test_ai_graph_db
|
6 |
+
ai_graph_emb_collection=test_ai_graph_collection
|
7 |
+
|
8 |
+
[download_model]
|
9 |
+
local_model_path=models/
|
10 |
+
model_name=openai/clip-vit-base-patch32
|
11 |
+
|
12 |
+
[graph_upload]
|
13 |
+
local_graph_path=graphs/
|
14 |
+
|
15 |
+
|
16 |
+
[server]
|
17 |
+
name=127.0.0.1
|
18 |
+
port=8080
|
graphs/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
models/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
pages/__init__.py
ADDED
File without changes
|
pages/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (170 Bytes). View file
|
|
pages/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (157 Bytes). View file
|
|
pages/__pycache__/chat.cpython-311.pyc
ADDED
Binary file (1.96 kB). View file
|
|
pages/__pycache__/chat_llm.cpython-311.pyc
ADDED
Binary file (4.77 kB). View file
|
|
pages/__pycache__/chat_search.cpython-311.pyc
ADDED
Binary file (2.23 kB). View file
|
|
pages/__pycache__/chat_search.cpython-312.pyc
ADDED
Binary file (5.69 kB). View file
|
|
pages/__pycache__/file_upload.cpython-311.pyc
ADDED
Binary file (3.81 kB). View file
|
|
pages/__pycache__/init_knowledge.cpython-311.pyc
ADDED
Binary file (1.61 kB). View file
|
|
pages/__pycache__/initial_and_upload.cpython-312.pyc
ADDED
Binary file (14.9 kB). View file
|
|
pages/__pycache__/knowledge.cpython-311.pyc
ADDED
Binary file (2.83 kB). View file
|
|
pages/__pycache__/knowledge_store.cpython-311.pyc
ADDED
Binary file (3.63 kB). View file
|
|
pages/__pycache__/main_page.cpython-311.pyc
ADDED
Binary file (3.98 kB). View file
|
|
pages/__pycache__/main_page.cpython-312.pyc
ADDED
Binary file (2.01 kB). View file
|
|
pages/chat_search.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from vector_db.vector_db_client import VectorDB
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoProcessor, CLIPModel
|
5 |
+
import os
|
6 |
+
import uuid
|
7 |
+
from tcvectordb.model.document import SearchParams
|
8 |
+
import traceback
|
9 |
+
|
10 |
+
LOCAL_MODEL_PATH = "download_model.local_model_path"
|
11 |
+
MODEL_NAME = "download_model.model_name"
|
12 |
+
LOCAL_GRAPH_PATH = "graph_upload.local_graph_path"
|
13 |
+
|
14 |
+
class ChatSearch:
|
15 |
+
def __init__(self, config, vdb: VectorDB):
|
16 |
+
self.vdb = vdb
|
17 |
+
self.model_name = config.get(MODEL_NAME)
|
18 |
+
self.local_model_path = config.get(LOCAL_MODEL_PATH)
|
19 |
+
self.local_graph_path = config.get(LOCAL_GRAPH_PATH)
|
20 |
+
self.model_cache_directory = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), self.local_model_path, self.model_name)
|
21 |
+
self.graph_cache_directory = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), self.local_graph_path)
|
22 |
+
|
23 |
+
def initial_model(self):
|
24 |
+
model = CLIPModel.from_pretrained(self.model_cache_directory)
|
25 |
+
processor = AutoProcessor.from_pretrained(self.model_cache_directory)
|
26 |
+
return model, processor
|
27 |
+
|
28 |
+
def search_result(self, image):
|
29 |
+
if image is None:
|
30 |
+
return "请先上传图片..."
|
31 |
+
|
32 |
+
if not os.path.exists(self.model_cache_directory):
|
33 |
+
return f"缓存目录 {self.model_cache_directory} 不存在,无法初始化模型。"
|
34 |
+
|
35 |
+
model, processor = self.initial_model()
|
36 |
+
try:
|
37 |
+
# 生成唯一的文件名
|
38 |
+
unique_filename = f"{uuid.uuid4().hex}.png"
|
39 |
+
image_path = os.path.join(self.graph_cache_directory, unique_filename)
|
40 |
+
|
41 |
+
# 保存图片到指定文件夹
|
42 |
+
image.save(image_path)
|
43 |
+
|
44 |
+
image_vector = self._process_image(image_path, model, processor).squeeze().tolist() # 转换为一维列表
|
45 |
+
|
46 |
+
# 假设你的 VectorDB 支持图片搜索
|
47 |
+
collection = self.vdb.get_collection()
|
48 |
+
res = collection.search(
|
49 |
+
vectors=[image_vector],
|
50 |
+
params=SearchParams(ef=200),
|
51 |
+
limit=10,
|
52 |
+
output_fields=['local_graph_path']
|
53 |
+
)
|
54 |
+
|
55 |
+
results = []
|
56 |
+
for i, docs in enumerate(res):
|
57 |
+
for doc in docs:
|
58 |
+
image_path = doc['local_graph_path']
|
59 |
+
try:
|
60 |
+
image = Image.open(image_path)
|
61 |
+
results.append(image)
|
62 |
+
except Exception as e:
|
63 |
+
print(f"无法加载图片 {image_path}: {e}")
|
64 |
+
return results
|
65 |
+
except Exception as e:
|
66 |
+
print(f"问题:{e}\n")
|
67 |
+
error_trace = traceback.format_exc()
|
68 |
+
print(error_trace)
|
69 |
+
|
70 |
+
def _process_image(self, image_path, emb_model, processor):
|
71 |
+
"""
|
72 |
+
处理单个图片文件,将其转换为向量。
|
73 |
+
|
74 |
+
参数:
|
75 |
+
image_path (str): 图片文件的路径。
|
76 |
+
|
77 |
+
返回:
|
78 |
+
torch.Tensor: 图片的向量表示。
|
79 |
+
"""
|
80 |
+
image = Image.open(image_path)
|
81 |
+
inputs = processor(images=image, return_tensors="pt")
|
82 |
+
image_features = emb_model.get_image_features(**inputs)
|
83 |
+
return image_features
|
84 |
+
|
85 |
+
def get_chart(self):
|
86 |
+
return gr.Interface(
|
87 |
+
fn=self.search_result,
|
88 |
+
inputs=gr.Image(type="pil", label="上传图片"),
|
89 |
+
outputs=gr.Gallery(label="检索结果"),
|
90 |
+
theme="soft",
|
91 |
+
description="上传图片进行检索",
|
92 |
+
allow_flagging="never"
|
93 |
+
)
|
94 |
+
|
pages/initial_and_upload.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import snapshot_download
|
4 |
+
import os
|
5 |
+
import zipfile
|
6 |
+
from PIL import Image, UnidentifiedImageError
|
7 |
+
from transformers import AutoProcessor, CLIPModel
|
8 |
+
from vector_db.vector_db_client import VectorDB
|
9 |
+
from tcvectordb.model.document import Document
|
10 |
+
import uuid
|
11 |
+
import traceback
|
12 |
+
import numpy as np
|
13 |
+
# 生成随机的 UUID
|
14 |
+
LOCAL_MODEL_PATH = "download_model.local_model_path"
|
15 |
+
MODEL_NAME = "download_model.model_name"
|
16 |
+
LOCAL_GRAPH_PATH="graph_upload.local_graph_path"
|
17 |
+
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
18 |
+
init_css="""
|
19 |
+
<style>
|
20 |
+
.equal-height-row {
|
21 |
+
display: flex;
|
22 |
+
}
|
23 |
+
.equal-height-column {
|
24 |
+
flex: 1;
|
25 |
+
display: flex;
|
26 |
+
flex-direction: column;
|
27 |
+
}
|
28 |
+
.equal-height-column > * {
|
29 |
+
flex: 1;
|
30 |
+
}
|
31 |
+
</style>
|
32 |
+
"""
|
33 |
+
class Initial_and_Upload:
|
34 |
+
|
35 |
+
def __init__(self, config,vdb: VectorDB):
|
36 |
+
self.vdb = vdb
|
37 |
+
self.model_name = config.get(MODEL_NAME)
|
38 |
+
self.local_model_path = config.get(LOCAL_MODEL_PATH)
|
39 |
+
self.local_graph_path=config.get(LOCAL_GRAPH_PATH)
|
40 |
+
self.model_cache_directory = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), self.local_model_path, self.model_name)
|
41 |
+
self.graph_cache_directory = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), self.local_graph_path)
|
42 |
+
|
43 |
+
def initial_model(self):
|
44 |
+
model = CLIPModel.from_pretrained(self.model_cache_directory)
|
45 |
+
processor = AutoProcessor.from_pretrained(self.model_cache_directory)
|
46 |
+
return model,processor
|
47 |
+
|
48 |
+
def _download_model(self, model_name, progress=gr.Progress()):
|
49 |
+
"""
|
50 |
+
下载指定的Hugging Face模型并保存在指定位置。
|
51 |
+
|
52 |
+
参数:
|
53 |
+
model_name (str): 模型在Hugging Face上的名字。
|
54 |
+
save_directory (str): 模型文件保存的位置。
|
55 |
+
"""
|
56 |
+
|
57 |
+
|
58 |
+
os.environ['TRANSFORMERS_CACHE'] = self.model_cache_directory
|
59 |
+
|
60 |
+
# 创建保存目录(如果不存在)
|
61 |
+
if not os.path.exists(self.model_cache_directory):
|
62 |
+
os.makedirs(self.model_cache_directory)
|
63 |
+
text = f"[正在尝试下载] 模型 {model_name},因为涉及到模型相关的多个文件下载,进度仅在后台显示。\n"
|
64 |
+
progress(0.5, desc=text)
|
65 |
+
try:
|
66 |
+
# 下载模型
|
67 |
+
snapshot_download(
|
68 |
+
repo_id=model_name,
|
69 |
+
local_dir=self.model_cache_directory,
|
70 |
+
local_dir_use_symlinks=False,
|
71 |
+
)
|
72 |
+
|
73 |
+
progress(1, f"模型 {model_name} 已下载并保存在 {self.model_cache_directory}")
|
74 |
+
text += f"模型 {model_name} 已下载并保存在 {self.model_cache_directory}"
|
75 |
+
|
76 |
+
time.sleep(0.3)
|
77 |
+
return text
|
78 |
+
except Exception as e:
|
79 |
+
text += f"[下载失败] 失败原因:{e}"
|
80 |
+
return text
|
81 |
+
|
82 |
+
def _process_image(self, image_path,emb_model,processor):
|
83 |
+
"""
|
84 |
+
处理单个图片文件,将其转换为向量。
|
85 |
+
|
86 |
+
参数:
|
87 |
+
image_path (str): 图片文件的路径。
|
88 |
+
|
89 |
+
返回:
|
90 |
+
torch.Tensor: 图片的向量表示。
|
91 |
+
"""
|
92 |
+
|
93 |
+
image = Image.open(image_path)
|
94 |
+
# image.verify() # 验证图片是否有效
|
95 |
+
inputs = processor(images=image, return_tensors="pt")
|
96 |
+
image_features = emb_model.get_image_features(**inputs)
|
97 |
+
return image_features
|
98 |
+
|
99 |
+
def _handle_upload(self, file, progress=gr.Progress()):
|
100 |
+
"""
|
101 |
+
处理上传的文件,识别是图片还是ZIP压缩包,并将图片转换为向量。
|
102 |
+
|
103 |
+
参数:
|
104 |
+
file (file): 上传的文件。
|
105 |
+
|
106 |
+
返回:
|
107 |
+
str: 文件类型和处理结果。
|
108 |
+
"""
|
109 |
+
output_text = ""
|
110 |
+
image_vectors = []
|
111 |
+
if not os.path.exists(self.model_cache_directory):
|
112 |
+
output_text += f"缓存目录 {self.model_cache_directory} 不存在,无法初始化模型。"
|
113 |
+
else:
|
114 |
+
model, processor = self.initial_model()
|
115 |
+
collection = self.vdb.get_collection()
|
116 |
+
|
117 |
+
if zipfile.is_zipfile(file.name):
|
118 |
+
with zipfile.ZipFile(file.name, 'r') as zip_ref:
|
119 |
+
zip_ref.extractall(self.local_graph_path)
|
120 |
+
image_files = [file_name for file_name in zip_ref.namelist() if file_name.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')) and not file_name.startswith('__MACOSX') and not file_name.startswith('._')]
|
121 |
+
|
122 |
+
total_files = len(image_files)
|
123 |
+
for i, file_name in enumerate(image_files):
|
124 |
+
image_path = os.path.join(self.local_graph_path, file_name)
|
125 |
+
try:
|
126 |
+
image_vector = self._process_image(image_path, model, processor).squeeze().tolist() # 转换为一维列表
|
127 |
+
random_uuid = str(uuid.uuid4()) # 转换为字符串
|
128 |
+
collection.upsert(documents=[Document(id=random_uuid, vector=image_vector, local_graph_path=image_path)], build_index=True)
|
129 |
+
output_text += f"处理图片: {file_name}\n"
|
130 |
+
except UnidentifiedImageError:
|
131 |
+
output_text += f"无法识别图片文件: {file_name}\n"
|
132 |
+
|
133 |
+
# 更新进度
|
134 |
+
progress((i + 1) / total_files)
|
135 |
+
|
136 |
+
output_text += "上传的是ZIP压缩包,已解压缩并处理所有图片。"
|
137 |
+
else:
|
138 |
+
try:
|
139 |
+
# 保存单张图片到指定文件夹
|
140 |
+
image_path = os.path.join(self.graph_cache_directory, os.path.basename(file.name))
|
141 |
+
with open(file.name, "rb") as f_src:
|
142 |
+
with open(image_path, "wb") as f_dst:
|
143 |
+
f_dst.write(f_src.read())
|
144 |
+
|
145 |
+
image_vector = self._process_image(image_path, model, processor).squeeze().tolist() # 转换为一维列表
|
146 |
+
random_uuid = str(uuid.uuid4()) # 转换为字符串
|
147 |
+
collection.upsert(documents=[Document(id=random_uuid, vector=image_vector, local_graph_path=image_path)], build_index=True)
|
148 |
+
output_text += "上传的是图片文件,并已处理。\n"
|
149 |
+
|
150 |
+
# 更新进度
|
151 |
+
progress(1.0)
|
152 |
+
except (IOError, SyntaxError) as e:
|
153 |
+
output_text += f"无法识别文件类型:{e}\n"
|
154 |
+
|
155 |
+
# 返回处理结果和图片向量
|
156 |
+
return output_text, image_vectors
|
157 |
+
def _initialize_vector_db(self, progress=gr.Progress()):
|
158 |
+
"""
|
159 |
+
初始化向量数据库。
|
160 |
+
|
161 |
+
返回:
|
162 |
+
str: 初始化结果。
|
163 |
+
"""
|
164 |
+
output_text = f"[正在尝试连接] VectorDB {self.vdb.address}\n"
|
165 |
+
progress(0, desc=output_text)
|
166 |
+
try:
|
167 |
+
client = self.vdb.create_client()
|
168 |
+
client.list_databases()
|
169 |
+
progress(0.05, f"[连接成功] VectorDB {self.vdb.address}\n")
|
170 |
+
output_text += f"[连接成功] VectorDB {self.vdb.address}\n"
|
171 |
+
client.close()
|
172 |
+
|
173 |
+
progress(0.1, f"[正在初始化] ai database '{self.vdb.db_name}'\n")
|
174 |
+
output_text += f"[正在初始化] ai database '{self.vdb.db_name}'\n"
|
175 |
+
self.vdb.init_database()
|
176 |
+
progress(0.3, f"[初始化完成] ai database '{self.vdb.db_name}'\n")
|
177 |
+
output_text += f"[初始化完成] ai database '{self.vdb.db_name}'\n"
|
178 |
+
|
179 |
+
progress(0.5, f"[正在初始化] ai collection '{self.vdb.ai_graph_emb_collection}'\n")
|
180 |
+
output_text += f"[正在初始化] ai collection '{self.vdb.ai_graph_emb_collection}'\n"
|
181 |
+
self.vdb.init_graph_collection()
|
182 |
+
progress(0.9, f"[初始化完成] ai collection '{self.vdb.ai_graph_emb_collection}'\n")
|
183 |
+
output_text += f"[初始化完成] ai collection '{self.vdb.ai_graph_emb_collection}'\n"
|
184 |
+
|
185 |
+
progress(1, f"您可以去图片上传栏目上传图片或ZIP压缩包,然后进一步进行[图片搜索]")
|
186 |
+
output_text += f"您可以去图片上传栏目上传图片或ZIP压缩包,然后进一步进行[图片搜索]"
|
187 |
+
|
188 |
+
time.sleep(0.3)
|
189 |
+
except Exception as e:
|
190 |
+
output_text += f"[数据库访问失败] 失败原因:{e}"
|
191 |
+
error_trace = traceback.format_exc()
|
192 |
+
print(error_trace)
|
193 |
+
return output_text
|
194 |
+
|
195 |
+
def get_init_panel(self):
|
196 |
+
with gr.Blocks() as demo:
|
197 |
+
gr.HTML(init_css)
|
198 |
+
with gr.Row():
|
199 |
+
|
200 |
+
with gr.Column():
|
201 |
+
model_name_input = gr.Textbox(lines=1, label="模型名称", placeholder="请输入Hugging Face模型名称...", value=self.model_name)
|
202 |
+
output = gr.Textbox(lines=10, label="下载进度", placeholder="下载进度将在这里显示...")
|
203 |
+
init_button = gr.Button("开始下载模型")
|
204 |
+
|
205 |
+
init_button.click(
|
206 |
+
fn=self._download_model,
|
207 |
+
inputs=[model_name_input],
|
208 |
+
outputs=output
|
209 |
+
)
|
210 |
+
with gr.Column():
|
211 |
+
db_init_output = gr.Textbox(lines=14.5, label="数据库初始化结果", placeholder="数据库初始化结果将在这里显示...")
|
212 |
+
db_init_button = gr.Button("初始化向量数据库")
|
213 |
+
|
214 |
+
db_init_button.click(
|
215 |
+
fn=self._initialize_vector_db,
|
216 |
+
inputs=[],
|
217 |
+
outputs=db_init_output
|
218 |
+
)
|
219 |
+
with gr.Row():
|
220 |
+
upload_file = gr.File(label="上传图片或ZIP压缩包")
|
221 |
+
with gr.Row():
|
222 |
+
upload_output = gr.Textbox(lines=10, label="上传结果", placeholder="上传结果将在这里显示...")
|
223 |
+
with gr.Row():
|
224 |
+
upload_button = gr.Button("上传文件")
|
225 |
+
|
226 |
+
upload_button.click(
|
227 |
+
fn=self._handle_upload,
|
228 |
+
inputs=[upload_file],
|
229 |
+
outputs=[upload_output, gr.State()]
|
230 |
+
)
|
231 |
+
|
232 |
+
return demo
|
pages/main_page.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pages.initial_and_upload import Initial_and_Upload
|
3 |
+
from pages.chat_search import ChatSearch
|
4 |
+
from vector_db.vector_db_client import VectorDB
|
5 |
+
|
6 |
+
main_css = """
|
7 |
+
.secondary.svelte-cmf5ev {
|
8 |
+
background: #6366f1;
|
9 |
+
color: #ffffff;
|
10 |
+
}
|
11 |
+
.main-text {
|
12 |
+
color: #6366f1;
|
13 |
+
padding-top: 20px;
|
14 |
+
text-align: center;
|
15 |
+
}
|
16 |
+
.main-title {
|
17 |
+
font-size: 28px;
|
18 |
+
font-weight: bold;
|
19 |
+
padding-top: 10px;
|
20 |
+
padding-bottom: 15px;
|
21 |
+
color: #6366f1;
|
22 |
+
text-align: center;
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
|
27 |
+
def init_pages(vdb: VectorDB, server_name: str, server_port,config):
|
28 |
+
initial_and_upload = Initial_and_Upload(config,vdb)
|
29 |
+
chat_search=ChatSearch(config,vdb)
|
30 |
+
|
31 |
+
with gr.Blocks(title="Tencent VectorDB", theme="soft", css=main_css) as demo:
|
32 |
+
with gr.Row():
|
33 |
+
gr.HTML("<div class='main-title'>Tencent VectorDB AI Demo -- Graph search</div>")
|
34 |
+
|
35 |
+
with gr.Tab("初始化页面"):
|
36 |
+
initial_and_upload.get_init_panel()
|
37 |
+
with gr.Tab("图搜图界面"):
|
38 |
+
chat_search.get_chart()
|
39 |
+
|
40 |
+
|
41 |
+
demo.launch(server_name=server_name, server_port=server_port)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tencentcloud-sdk-python-common
|
2 |
+
pydantic
|
3 |
+
gradio==4.39.0
|
4 |
+
transformers==4.44.2
|
5 |
+
torch==2.4.1
|
6 |
+
torchvision==0.19.1
|
7 |
+
huggingface_hub
|
8 |
+
tcvectordb
|
9 |
+
fastapi==0.111.1
|
vector_db/__init__.py
ADDED
File without changes
|
vector_db/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (174 Bytes). View file
|
|
vector_db/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (161 Bytes). View file
|
|
vector_db/__pycache__/vector_db_client.cpython-311.pyc
ADDED
Binary file (3.73 kB). View file
|
|
vector_db/__pycache__/vector_db_client.cpython-312.pyc
ADDED
Binary file (4.53 kB). View file
|
|
vector_db/vector_db_client.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tcvectordb
|
2 |
+
from tcvectordb.model.database import Database
|
3 |
+
from tcvectordb.model.collection import Collection
|
4 |
+
from tcvectordb.model.index import Index, VectorIndex, FilterIndex, HNSWParams
|
5 |
+
from tcvectordb.model.enum import FieldType, IndexType, MetricType
|
6 |
+
VDB_ADDRESS = "vector_db.address"
|
7 |
+
VDB_KEY = "vector_db.key"
|
8 |
+
AI_DB_NAME = "vector_db.ai_db"
|
9 |
+
AI_COLLECTION_NAME = "vector_db.ai_graph_emb_collection"
|
10 |
+
|
11 |
+
|
12 |
+
class VectorDB:
|
13 |
+
def __init__(self, config):
|
14 |
+
self.address = config.get(VDB_ADDRESS)
|
15 |
+
self.key = config.get(VDB_KEY)
|
16 |
+
self.db_name = config.get(AI_DB_NAME)
|
17 |
+
self.ai_graph_emb_collection = config.get(AI_COLLECTION_NAME)
|
18 |
+
|
19 |
+
print(f"Try to connect vector db {self.address}")
|
20 |
+
self.client = self.create_client()
|
21 |
+
self._test_simple()
|
22 |
+
|
23 |
+
def create_client(self):
|
24 |
+
return tcvectordb.RPCVectorDBClient(
|
25 |
+
url=self.address,
|
26 |
+
username='root',
|
27 |
+
key=self.key,
|
28 |
+
timeout=30
|
29 |
+
)
|
30 |
+
|
31 |
+
def _test_simple(self):
|
32 |
+
self.client.list_databases()
|
33 |
+
|
34 |
+
def init_database(self):
|
35 |
+
try:
|
36 |
+
self.client.create_database(self.db_name)
|
37 |
+
except tcvectordb.exceptions.VectorDBException:
|
38 |
+
self.client.drop_database(self.db_name)
|
39 |
+
self.client.create_database(self.db_name)
|
40 |
+
|
41 |
+
def init_graph_collection(self):
|
42 |
+
index = Index(
|
43 |
+
FilterIndex(name='id', field_type=FieldType.String, index_type=IndexType.PRIMARY_KEY),
|
44 |
+
FilterIndex(name='local_graph_path', field_type=FieldType.String, index_type=IndexType.FILTER),
|
45 |
+
VectorIndex(name='vector', dimension=512, index_type=IndexType.HNSW,
|
46 |
+
metric_type=MetricType.COSINE, params=HNSWParams(m=16, efconstruction=200))
|
47 |
+
)
|
48 |
+
|
49 |
+
database: Database = self.client.database(self.db_name)
|
50 |
+
try:
|
51 |
+
database.create_collection(name=self.ai_graph_emb_collection ,shard=1,replicas=2,index=index,
|
52 |
+
description='this is a collection of graph embedding'
|
53 |
+
|
54 |
+
)
|
55 |
+
except tcvectordb.exceptions.VectorDBException:
|
56 |
+
database.drop_collection(self.ai_graph_emb_collection)
|
57 |
+
database.create_collection(name=self.ai_graph_emb_collection ,shard=1,replicas=2,index=index,
|
58 |
+
description='this is a collection of graph embedding'
|
59 |
+
|
60 |
+
)
|
61 |
+
def get_collection(self) -> Collection:
|
62 |
+
database: Database = self.client.database(self.db_name)
|
63 |
+
return database.collection(self.ai_graph_emb_collection)
|