sunnychenxiwang's picture
update nltk
d916065
raw
history blame
22.3 kB
# Natural Language Toolkit: CONLL Corpus Reader
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Bird <[email protected]>
# Edward Loper <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Read CoNLL-style chunk fileids.
"""
import textwrap
from nltk.corpus.reader.api import *
from nltk.corpus.reader.util import *
from nltk.tag import map_tag
from nltk.tree import Tree
from nltk.util import LazyConcatenation, LazyMap
class ConllCorpusReader(CorpusReader):
"""
A corpus reader for CoNLL-style files. These files consist of a
series of sentences, separated by blank lines. Each sentence is
encoded using a table (or "grid") of values, where each line
corresponds to a single word, and each column corresponds to an
annotation type. The set of columns used by CoNLL-style files can
vary from corpus to corpus; the ``ConllCorpusReader`` constructor
therefore takes an argument, ``columntypes``, which is used to
specify the columns that are used by a given corpus. By default
columns are split by consecutive whitespaces, with the
``separator`` argument you can set a string to split by (e.g.
``\'\t\'``).
@todo: Add support for reading from corpora where different
parallel files contain different columns.
@todo: Possibly add caching of the grid corpus view? This would
allow the same grid view to be used by different data access
methods (eg words() and parsed_sents() could both share the
same grid corpus view object).
@todo: Better support for -DOCSTART-. Currently, we just ignore
it, but it could be used to define methods that retrieve a
document at a time (eg parsed_documents()).
"""
# /////////////////////////////////////////////////////////////////
# Column Types
# /////////////////////////////////////////////////////////////////
WORDS = "words" #: column type for words
POS = "pos" #: column type for part-of-speech tags
TREE = "tree" #: column type for parse trees
CHUNK = "chunk" #: column type for chunk structures
NE = "ne" #: column type for named entities
SRL = "srl" #: column type for semantic role labels
IGNORE = "ignore" #: column type for column that should be ignored
#: A list of all column types supported by the conll corpus reader.
COLUMN_TYPES = (WORDS, POS, TREE, CHUNK, NE, SRL, IGNORE)
# /////////////////////////////////////////////////////////////////
# Constructor
# /////////////////////////////////////////////////////////////////
def __init__(
self,
root,
fileids,
columntypes,
chunk_types=None,
root_label="S",
pos_in_tree=False,
srl_includes_roleset=True,
encoding="utf8",
tree_class=Tree,
tagset=None,
separator=None,
):
for columntype in columntypes:
if columntype not in self.COLUMN_TYPES:
raise ValueError("Bad column type %r" % columntype)
if isinstance(chunk_types, str):
chunk_types = [chunk_types]
self._chunk_types = chunk_types
self._colmap = {c: i for (i, c) in enumerate(columntypes)}
self._pos_in_tree = pos_in_tree
self._root_label = root_label # for chunks
self._srl_includes_roleset = srl_includes_roleset
self._tree_class = tree_class
CorpusReader.__init__(self, root, fileids, encoding)
self._tagset = tagset
self.sep = separator
# /////////////////////////////////////////////////////////////////
# Data Access Methods
# /////////////////////////////////////////////////////////////////
def words(self, fileids=None):
self._require(self.WORDS)
return LazyConcatenation(LazyMap(self._get_words, self._grids(fileids)))
def sents(self, fileids=None):
self._require(self.WORDS)
return LazyMap(self._get_words, self._grids(fileids))
def tagged_words(self, fileids=None, tagset=None):
self._require(self.WORDS, self.POS)
def get_tagged_words(grid):
return self._get_tagged_words(grid, tagset)
return LazyConcatenation(LazyMap(get_tagged_words, self._grids(fileids)))
def tagged_sents(self, fileids=None, tagset=None):
self._require(self.WORDS, self.POS)
def get_tagged_words(grid):
return self._get_tagged_words(grid, tagset)
return LazyMap(get_tagged_words, self._grids(fileids))
def chunked_words(self, fileids=None, chunk_types=None, tagset=None):
self._require(self.WORDS, self.POS, self.CHUNK)
if chunk_types is None:
chunk_types = self._chunk_types
def get_chunked_words(grid): # capture chunk_types as local var
return self._get_chunked_words(grid, chunk_types, tagset)
return LazyConcatenation(LazyMap(get_chunked_words, self._grids(fileids)))
def chunked_sents(self, fileids=None, chunk_types=None, tagset=None):
self._require(self.WORDS, self.POS, self.CHUNK)
if chunk_types is None:
chunk_types = self._chunk_types
def get_chunked_words(grid): # capture chunk_types as local var
return self._get_chunked_words(grid, chunk_types, tagset)
return LazyMap(get_chunked_words, self._grids(fileids))
def parsed_sents(self, fileids=None, pos_in_tree=None, tagset=None):
self._require(self.WORDS, self.POS, self.TREE)
if pos_in_tree is None:
pos_in_tree = self._pos_in_tree
def get_parsed_sent(grid): # capture pos_in_tree as local var
return self._get_parsed_sent(grid, pos_in_tree, tagset)
return LazyMap(get_parsed_sent, self._grids(fileids))
def srl_spans(self, fileids=None):
self._require(self.SRL)
return LazyMap(self._get_srl_spans, self._grids(fileids))
def srl_instances(self, fileids=None, pos_in_tree=None, flatten=True):
self._require(self.WORDS, self.POS, self.TREE, self.SRL)
if pos_in_tree is None:
pos_in_tree = self._pos_in_tree
def get_srl_instances(grid): # capture pos_in_tree as local var
return self._get_srl_instances(grid, pos_in_tree)
result = LazyMap(get_srl_instances, self._grids(fileids))
if flatten:
result = LazyConcatenation(result)
return result
def iob_words(self, fileids=None, tagset=None):
"""
:return: a list of word/tag/IOB tuples
:rtype: list(tuple)
:param fileids: the list of fileids that make up this corpus
:type fileids: None or str or list
"""
self._require(self.WORDS, self.POS, self.CHUNK)
def get_iob_words(grid):
return self._get_iob_words(grid, tagset)
return LazyConcatenation(LazyMap(get_iob_words, self._grids(fileids)))
def iob_sents(self, fileids=None, tagset=None):
"""
:return: a list of lists of word/tag/IOB tuples
:rtype: list(list)
:param fileids: the list of fileids that make up this corpus
:type fileids: None or str or list
"""
self._require(self.WORDS, self.POS, self.CHUNK)
def get_iob_words(grid):
return self._get_iob_words(grid, tagset)
return LazyMap(get_iob_words, self._grids(fileids))
# /////////////////////////////////////////////////////////////////
# Grid Reading
# /////////////////////////////////////////////////////////////////
def _grids(self, fileids=None):
# n.b.: we could cache the object returned here (keyed on
# fileids), which would let us reuse the same corpus view for
# different things (eg srl and parse trees).
return concat(
[
StreamBackedCorpusView(fileid, self._read_grid_block, encoding=enc)
for (fileid, enc) in self.abspaths(fileids, True)
]
)
def _read_grid_block(self, stream):
grids = []
for block in read_blankline_block(stream):
block = block.strip()
if not block:
continue
grid = [line.split(self.sep) for line in block.split("\n")]
# If there's a docstart row, then discard. ([xx] eventually it
# would be good to actually use it)
if grid[0][self._colmap.get("words", 0)] == "-DOCSTART-":
del grid[0]
# Check that the grid is consistent.
for row in grid:
if len(row) != len(grid[0]):
raise ValueError("Inconsistent number of columns:\n%s" % block)
grids.append(grid)
return grids
# /////////////////////////////////////////////////////////////////
# Transforms
# /////////////////////////////////////////////////////////////////
# given a grid, transform it into some representation (e.g.,
# a list of words or a parse tree).
def _get_words(self, grid):
return self._get_column(grid, self._colmap["words"])
def _get_tagged_words(self, grid, tagset=None):
pos_tags = self._get_column(grid, self._colmap["pos"])
if tagset and tagset != self._tagset:
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
return list(zip(self._get_column(grid, self._colmap["words"]), pos_tags))
def _get_iob_words(self, grid, tagset=None):
pos_tags = self._get_column(grid, self._colmap["pos"])
if tagset and tagset != self._tagset:
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
return list(
zip(
self._get_column(grid, self._colmap["words"]),
pos_tags,
self._get_column(grid, self._colmap["chunk"]),
)
)
def _get_chunked_words(self, grid, chunk_types, tagset=None):
# n.b.: this method is very similar to conllstr2tree.
words = self._get_column(grid, self._colmap["words"])
pos_tags = self._get_column(grid, self._colmap["pos"])
if tagset and tagset != self._tagset:
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
chunk_tags = self._get_column(grid, self._colmap["chunk"])
stack = [Tree(self._root_label, [])]
for (word, pos_tag, chunk_tag) in zip(words, pos_tags, chunk_tags):
if chunk_tag == "O":
state, chunk_type = "O", ""
else:
(state, chunk_type) = chunk_tag.split("-")
# If it's a chunk we don't care about, treat it as O.
if chunk_types is not None and chunk_type not in chunk_types:
state = "O"
# Treat a mismatching I like a B.
if state == "I" and chunk_type != stack[-1].label():
state = "B"
# For B or I: close any open chunks
if state in "BO" and len(stack) == 2:
stack.pop()
# For B: start a new chunk.
if state == "B":
new_chunk = Tree(chunk_type, [])
stack[-1].append(new_chunk)
stack.append(new_chunk)
# Add the word token.
stack[-1].append((word, pos_tag))
return stack[0]
def _get_parsed_sent(self, grid, pos_in_tree, tagset=None):
words = self._get_column(grid, self._colmap["words"])
pos_tags = self._get_column(grid, self._colmap["pos"])
if tagset and tagset != self._tagset:
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
parse_tags = self._get_column(grid, self._colmap["tree"])
treestr = ""
for (word, pos_tag, parse_tag) in zip(words, pos_tags, parse_tags):
if word == "(":
word = "-LRB-"
if word == ")":
word = "-RRB-"
if pos_tag == "(":
pos_tag = "-LRB-"
if pos_tag == ")":
pos_tag = "-RRB-"
(left, right) = parse_tag.split("*")
right = right.count(")") * ")" # only keep ')'.
treestr += f"{left} ({pos_tag} {word}) {right}"
try:
tree = self._tree_class.fromstring(treestr)
except (ValueError, IndexError):
tree = self._tree_class.fromstring(f"({self._root_label} {treestr})")
if not pos_in_tree:
for subtree in tree.subtrees():
for i, child in enumerate(subtree):
if (
isinstance(child, Tree)
and len(child) == 1
and isinstance(child[0], str)
):
subtree[i] = (child[0], child.label())
return tree
def _get_srl_spans(self, grid):
"""
list of list of (start, end), tag) tuples
"""
if self._srl_includes_roleset:
predicates = self._get_column(grid, self._colmap["srl"] + 1)
start_col = self._colmap["srl"] + 2
else:
predicates = self._get_column(grid, self._colmap["srl"])
start_col = self._colmap["srl"] + 1
# Count how many predicates there are. This tells us how many
# columns to expect for SRL data.
num_preds = len([p for p in predicates if p != "-"])
spanlists = []
for i in range(num_preds):
col = self._get_column(grid, start_col + i)
spanlist = []
stack = []
for wordnum, srl_tag in enumerate(col):
(left, right) = srl_tag.split("*")
for tag in left.split("("):
if tag:
stack.append((tag, wordnum))
for i in range(right.count(")")):
(tag, start) = stack.pop()
spanlist.append(((start, wordnum + 1), tag))
spanlists.append(spanlist)
return spanlists
def _get_srl_instances(self, grid, pos_in_tree):
tree = self._get_parsed_sent(grid, pos_in_tree)
spanlists = self._get_srl_spans(grid)
if self._srl_includes_roleset:
predicates = self._get_column(grid, self._colmap["srl"] + 1)
rolesets = self._get_column(grid, self._colmap["srl"])
else:
predicates = self._get_column(grid, self._colmap["srl"])
rolesets = [None] * len(predicates)
instances = ConllSRLInstanceList(tree)
for wordnum, predicate in enumerate(predicates):
if predicate == "-":
continue
# Decide which spanlist to use. Don't assume that they're
# sorted in the same order as the predicates (even though
# they usually are).
for spanlist in spanlists:
for (start, end), tag in spanlist:
if wordnum in range(start, end) and tag in ("V", "C-V"):
break
else:
continue
break
else:
raise ValueError("No srl column found for %r" % predicate)
instances.append(
ConllSRLInstance(tree, wordnum, predicate, rolesets[wordnum], spanlist)
)
return instances
# /////////////////////////////////////////////////////////////////
# Helper Methods
# /////////////////////////////////////////////////////////////////
def _require(self, *columntypes):
for columntype in columntypes:
if columntype not in self._colmap:
raise ValueError(
"This corpus does not contain a %s " "column." % columntype
)
@staticmethod
def _get_column(grid, column_index):
return [grid[i][column_index] for i in range(len(grid))]
class ConllSRLInstance:
"""
An SRL instance from a CoNLL corpus, which identifies and
providing labels for the arguments of a single verb.
"""
# [xx] add inst.core_arguments, inst.argm_arguments?
def __init__(self, tree, verb_head, verb_stem, roleset, tagged_spans):
self.verb = []
"""A list of the word indices of the words that compose the
verb whose arguments are identified by this instance.
This will contain multiple word indices when multi-word
verbs are used (e.g. 'turn on')."""
self.verb_head = verb_head
"""The word index of the head word of the verb whose arguments
are identified by this instance. E.g., for a sentence that
uses the verb 'turn on,' ``verb_head`` will be the word index
of the word 'turn'."""
self.verb_stem = verb_stem
self.roleset = roleset
self.arguments = []
"""A list of ``(argspan, argid)`` tuples, specifying the location
and type for each of the arguments identified by this
instance. ``argspan`` is a tuple ``start, end``, indicating
that the argument consists of the ``words[start:end]``."""
self.tagged_spans = tagged_spans
"""A list of ``(span, id)`` tuples, specifying the location and
type for each of the arguments, as well as the verb pieces,
that make up this instance."""
self.tree = tree
"""The parse tree for the sentence containing this instance."""
self.words = tree.leaves()
"""A list of the words in the sentence containing this
instance."""
# Fill in the self.verb and self.arguments values.
for (start, end), tag in tagged_spans:
if tag in ("V", "C-V"):
self.verb += list(range(start, end))
else:
self.arguments.append(((start, end), tag))
def __repr__(self):
# Originally, its:
##plural = 's' if len(self.arguments) != 1 else ''
plural = "s" if len(self.arguments) != 1 else ""
return "<ConllSRLInstance for %r with %d argument%s>" % (
(self.verb_stem, len(self.arguments), plural)
)
def pprint(self):
verbstr = " ".join(self.words[i][0] for i in self.verb)
hdr = f"SRL for {verbstr!r} (stem={self.verb_stem!r}):\n"
s = ""
for i, word in enumerate(self.words):
if isinstance(word, tuple):
word = word[0]
for (start, end), argid in self.arguments:
if i == start:
s += "[%s " % argid
if i == end:
s += "] "
if i in self.verb:
word = "<<%s>>" % word
s += word + " "
return hdr + textwrap.fill(
s.replace(" ]", "]"), initial_indent=" ", subsequent_indent=" "
)
class ConllSRLInstanceList(list):
"""
Set of instances for a single sentence
"""
def __init__(self, tree, instances=()):
self.tree = tree
list.__init__(self, instances)
def __str__(self):
return self.pprint()
def pprint(self, include_tree=False):
# Sanity check: trees should be the same
for inst in self:
if inst.tree != self.tree:
raise ValueError("Tree mismatch!")
# If desired, add trees:
if include_tree:
words = self.tree.leaves()
pos = [None] * len(words)
synt = ["*"] * len(words)
self._tree2conll(self.tree, 0, words, pos, synt)
s = ""
for i in range(len(words)):
# optional tree columns
if include_tree:
s += "%-20s " % words[i]
s += "%-8s " % pos[i]
s += "%15s*%-8s " % tuple(synt[i].split("*"))
# verb head column
for inst in self:
if i == inst.verb_head:
s += "%-20s " % inst.verb_stem
break
else:
s += "%-20s " % "-"
# Remaining columns: self
for inst in self:
argstr = "*"
for (start, end), argid in inst.tagged_spans:
if i == start:
argstr = f"({argid}{argstr}"
if i == (end - 1):
argstr += ")"
s += "%-12s " % argstr
s += "\n"
return s
def _tree2conll(self, tree, wordnum, words, pos, synt):
assert isinstance(tree, Tree)
if len(tree) == 1 and isinstance(tree[0], str):
pos[wordnum] = tree.label()
assert words[wordnum] == tree[0]
return wordnum + 1
elif len(tree) == 1 and isinstance(tree[0], tuple):
assert len(tree[0]) == 2
pos[wordnum], pos[wordnum] = tree[0]
return wordnum + 1
else:
synt[wordnum] = f"({tree.label()}{synt[wordnum]}"
for child in tree:
wordnum = self._tree2conll(child, wordnum, words, pos, synt)
synt[wordnum - 1] += ")"
return wordnum
class ConllChunkCorpusReader(ConllCorpusReader):
"""
A ConllCorpusReader whose data file contains three columns: words,
pos, and chunk.
"""
def __init__(
self, root, fileids, chunk_types, encoding="utf8", tagset=None, separator=None
):
ConllCorpusReader.__init__(
self,
root,
fileids,
("words", "pos", "chunk"),
chunk_types=chunk_types,
encoding=encoding,
tagset=tagset,
separator=separator,
)