File size: 22,301 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# Natural Language Toolkit: CONLL Corpus Reader
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Bird <[email protected]>
#         Edward Loper <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Read CoNLL-style chunk fileids.

"""

import textwrap

from nltk.corpus.reader.api import *
from nltk.corpus.reader.util import *
from nltk.tag import map_tag
from nltk.tree import Tree
from nltk.util import LazyConcatenation, LazyMap


class ConllCorpusReader(CorpusReader):
    """

    A corpus reader for CoNLL-style files.  These files consist of a

    series of sentences, separated by blank lines.  Each sentence is

    encoded using a table (or "grid") of values, where each line

    corresponds to a single word, and each column corresponds to an

    annotation type.  The set of columns used by CoNLL-style files can

    vary from corpus to corpus; the ``ConllCorpusReader`` constructor

    therefore takes an argument, ``columntypes``, which is used to

    specify the columns that are used by a given corpus. By default

    columns are split by consecutive whitespaces, with the

    ``separator`` argument you can set a string to split by (e.g.

    ``\'\t\'``).





    @todo: Add support for reading from corpora where different

        parallel files contain different columns.

    @todo: Possibly add caching of the grid corpus view?  This would

        allow the same grid view to be used by different data access

        methods (eg words() and parsed_sents() could both share the

        same grid corpus view object).

    @todo: Better support for -DOCSTART-.  Currently, we just ignore

        it, but it could be used to define methods that retrieve a

        document at a time (eg parsed_documents()).

    """

    # /////////////////////////////////////////////////////////////////
    # Column Types
    # /////////////////////////////////////////////////////////////////

    WORDS = "words"  #: column type for words
    POS = "pos"  #: column type for part-of-speech tags
    TREE = "tree"  #: column type for parse trees
    CHUNK = "chunk"  #: column type for chunk structures
    NE = "ne"  #: column type for named entities
    SRL = "srl"  #: column type for semantic role labels
    IGNORE = "ignore"  #: column type for column that should be ignored

    #: A list of all column types supported by the conll corpus reader.
    COLUMN_TYPES = (WORDS, POS, TREE, CHUNK, NE, SRL, IGNORE)

    # /////////////////////////////////////////////////////////////////
    # Constructor
    # /////////////////////////////////////////////////////////////////

    def __init__(

        self,

        root,

        fileids,

        columntypes,

        chunk_types=None,

        root_label="S",

        pos_in_tree=False,

        srl_includes_roleset=True,

        encoding="utf8",

        tree_class=Tree,

        tagset=None,

        separator=None,

    ):
        for columntype in columntypes:
            if columntype not in self.COLUMN_TYPES:
                raise ValueError("Bad column type %r" % columntype)
        if isinstance(chunk_types, str):
            chunk_types = [chunk_types]
        self._chunk_types = chunk_types
        self._colmap = {c: i for (i, c) in enumerate(columntypes)}
        self._pos_in_tree = pos_in_tree
        self._root_label = root_label  # for chunks
        self._srl_includes_roleset = srl_includes_roleset
        self._tree_class = tree_class
        CorpusReader.__init__(self, root, fileids, encoding)
        self._tagset = tagset
        self.sep = separator

    # /////////////////////////////////////////////////////////////////
    # Data Access Methods
    # /////////////////////////////////////////////////////////////////

    def words(self, fileids=None):
        self._require(self.WORDS)
        return LazyConcatenation(LazyMap(self._get_words, self._grids(fileids)))

    def sents(self, fileids=None):
        self._require(self.WORDS)
        return LazyMap(self._get_words, self._grids(fileids))

    def tagged_words(self, fileids=None, tagset=None):
        self._require(self.WORDS, self.POS)

        def get_tagged_words(grid):
            return self._get_tagged_words(grid, tagset)

        return LazyConcatenation(LazyMap(get_tagged_words, self._grids(fileids)))

    def tagged_sents(self, fileids=None, tagset=None):
        self._require(self.WORDS, self.POS)

        def get_tagged_words(grid):
            return self._get_tagged_words(grid, tagset)

        return LazyMap(get_tagged_words, self._grids(fileids))

    def chunked_words(self, fileids=None, chunk_types=None, tagset=None):
        self._require(self.WORDS, self.POS, self.CHUNK)
        if chunk_types is None:
            chunk_types = self._chunk_types

        def get_chunked_words(grid):  # capture chunk_types as local var
            return self._get_chunked_words(grid, chunk_types, tagset)

        return LazyConcatenation(LazyMap(get_chunked_words, self._grids(fileids)))

    def chunked_sents(self, fileids=None, chunk_types=None, tagset=None):
        self._require(self.WORDS, self.POS, self.CHUNK)
        if chunk_types is None:
            chunk_types = self._chunk_types

        def get_chunked_words(grid):  # capture chunk_types as local var
            return self._get_chunked_words(grid, chunk_types, tagset)

        return LazyMap(get_chunked_words, self._grids(fileids))

    def parsed_sents(self, fileids=None, pos_in_tree=None, tagset=None):
        self._require(self.WORDS, self.POS, self.TREE)
        if pos_in_tree is None:
            pos_in_tree = self._pos_in_tree

        def get_parsed_sent(grid):  # capture pos_in_tree as local var
            return self._get_parsed_sent(grid, pos_in_tree, tagset)

        return LazyMap(get_parsed_sent, self._grids(fileids))

    def srl_spans(self, fileids=None):
        self._require(self.SRL)
        return LazyMap(self._get_srl_spans, self._grids(fileids))

    def srl_instances(self, fileids=None, pos_in_tree=None, flatten=True):
        self._require(self.WORDS, self.POS, self.TREE, self.SRL)
        if pos_in_tree is None:
            pos_in_tree = self._pos_in_tree

        def get_srl_instances(grid):  # capture pos_in_tree as local var
            return self._get_srl_instances(grid, pos_in_tree)

        result = LazyMap(get_srl_instances, self._grids(fileids))
        if flatten:
            result = LazyConcatenation(result)
        return result

    def iob_words(self, fileids=None, tagset=None):
        """

        :return: a list of word/tag/IOB tuples

        :rtype: list(tuple)

        :param fileids: the list of fileids that make up this corpus

        :type fileids: None or str or list

        """
        self._require(self.WORDS, self.POS, self.CHUNK)

        def get_iob_words(grid):
            return self._get_iob_words(grid, tagset)

        return LazyConcatenation(LazyMap(get_iob_words, self._grids(fileids)))

    def iob_sents(self, fileids=None, tagset=None):
        """

        :return: a list of lists of word/tag/IOB tuples

        :rtype: list(list)

        :param fileids: the list of fileids that make up this corpus

        :type fileids: None or str or list

        """
        self._require(self.WORDS, self.POS, self.CHUNK)

        def get_iob_words(grid):
            return self._get_iob_words(grid, tagset)

        return LazyMap(get_iob_words, self._grids(fileids))

    # /////////////////////////////////////////////////////////////////
    # Grid Reading
    # /////////////////////////////////////////////////////////////////

    def _grids(self, fileids=None):
        # n.b.: we could cache the object returned here (keyed on
        # fileids), which would let us reuse the same corpus view for
        # different things (eg srl and parse trees).
        return concat(
            [
                StreamBackedCorpusView(fileid, self._read_grid_block, encoding=enc)
                for (fileid, enc) in self.abspaths(fileids, True)
            ]
        )

    def _read_grid_block(self, stream):
        grids = []
        for block in read_blankline_block(stream):
            block = block.strip()
            if not block:
                continue

            grid = [line.split(self.sep) for line in block.split("\n")]

            # If there's a docstart row, then discard. ([xx] eventually it
            # would be good to actually use it)
            if grid[0][self._colmap.get("words", 0)] == "-DOCSTART-":
                del grid[0]

            # Check that the grid is consistent.
            for row in grid:
                if len(row) != len(grid[0]):
                    raise ValueError("Inconsistent number of columns:\n%s" % block)
            grids.append(grid)
        return grids

    # /////////////////////////////////////////////////////////////////
    # Transforms
    # /////////////////////////////////////////////////////////////////
    # given a grid, transform it into some representation (e.g.,
    # a list of words or a parse tree).

    def _get_words(self, grid):
        return self._get_column(grid, self._colmap["words"])

    def _get_tagged_words(self, grid, tagset=None):
        pos_tags = self._get_column(grid, self._colmap["pos"])
        if tagset and tagset != self._tagset:
            pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
        return list(zip(self._get_column(grid, self._colmap["words"]), pos_tags))

    def _get_iob_words(self, grid, tagset=None):
        pos_tags = self._get_column(grid, self._colmap["pos"])
        if tagset and tagset != self._tagset:
            pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
        return list(
            zip(
                self._get_column(grid, self._colmap["words"]),
                pos_tags,
                self._get_column(grid, self._colmap["chunk"]),
            )
        )

    def _get_chunked_words(self, grid, chunk_types, tagset=None):
        # n.b.: this method is very similar to conllstr2tree.
        words = self._get_column(grid, self._colmap["words"])
        pos_tags = self._get_column(grid, self._colmap["pos"])
        if tagset and tagset != self._tagset:
            pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
        chunk_tags = self._get_column(grid, self._colmap["chunk"])

        stack = [Tree(self._root_label, [])]

        for (word, pos_tag, chunk_tag) in zip(words, pos_tags, chunk_tags):
            if chunk_tag == "O":
                state, chunk_type = "O", ""
            else:
                (state, chunk_type) = chunk_tag.split("-")
            # If it's a chunk we don't care about, treat it as O.
            if chunk_types is not None and chunk_type not in chunk_types:
                state = "O"
            # Treat a mismatching I like a B.
            if state == "I" and chunk_type != stack[-1].label():
                state = "B"
            # For B or I: close any open chunks
            if state in "BO" and len(stack) == 2:
                stack.pop()
            # For B: start a new chunk.
            if state == "B":
                new_chunk = Tree(chunk_type, [])
                stack[-1].append(new_chunk)
                stack.append(new_chunk)
            # Add the word token.
            stack[-1].append((word, pos_tag))

        return stack[0]

    def _get_parsed_sent(self, grid, pos_in_tree, tagset=None):
        words = self._get_column(grid, self._colmap["words"])
        pos_tags = self._get_column(grid, self._colmap["pos"])
        if tagset and tagset != self._tagset:
            pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
        parse_tags = self._get_column(grid, self._colmap["tree"])

        treestr = ""
        for (word, pos_tag, parse_tag) in zip(words, pos_tags, parse_tags):
            if word == "(":
                word = "-LRB-"
            if word == ")":
                word = "-RRB-"
            if pos_tag == "(":
                pos_tag = "-LRB-"
            if pos_tag == ")":
                pos_tag = "-RRB-"
            (left, right) = parse_tag.split("*")
            right = right.count(")") * ")"  # only keep ')'.
            treestr += f"{left} ({pos_tag} {word}) {right}"
        try:
            tree = self._tree_class.fromstring(treestr)
        except (ValueError, IndexError):
            tree = self._tree_class.fromstring(f"({self._root_label} {treestr})")

        if not pos_in_tree:
            for subtree in tree.subtrees():
                for i, child in enumerate(subtree):
                    if (
                        isinstance(child, Tree)
                        and len(child) == 1
                        and isinstance(child[0], str)
                    ):
                        subtree[i] = (child[0], child.label())

        return tree

    def _get_srl_spans(self, grid):
        """

        list of list of (start, end), tag) tuples

        """
        if self._srl_includes_roleset:
            predicates = self._get_column(grid, self._colmap["srl"] + 1)
            start_col = self._colmap["srl"] + 2
        else:
            predicates = self._get_column(grid, self._colmap["srl"])
            start_col = self._colmap["srl"] + 1

        # Count how many predicates there are.  This tells us how many
        # columns to expect for SRL data.
        num_preds = len([p for p in predicates if p != "-"])

        spanlists = []
        for i in range(num_preds):
            col = self._get_column(grid, start_col + i)
            spanlist = []
            stack = []
            for wordnum, srl_tag in enumerate(col):
                (left, right) = srl_tag.split("*")
                for tag in left.split("("):
                    if tag:
                        stack.append((tag, wordnum))
                for i in range(right.count(")")):
                    (tag, start) = stack.pop()
                    spanlist.append(((start, wordnum + 1), tag))
            spanlists.append(spanlist)

        return spanlists

    def _get_srl_instances(self, grid, pos_in_tree):
        tree = self._get_parsed_sent(grid, pos_in_tree)
        spanlists = self._get_srl_spans(grid)
        if self._srl_includes_roleset:
            predicates = self._get_column(grid, self._colmap["srl"] + 1)
            rolesets = self._get_column(grid, self._colmap["srl"])
        else:
            predicates = self._get_column(grid, self._colmap["srl"])
            rolesets = [None] * len(predicates)

        instances = ConllSRLInstanceList(tree)
        for wordnum, predicate in enumerate(predicates):
            if predicate == "-":
                continue
            # Decide which spanlist to use.  Don't assume that they're
            # sorted in the same order as the predicates (even though
            # they usually are).
            for spanlist in spanlists:
                for (start, end), tag in spanlist:
                    if wordnum in range(start, end) and tag in ("V", "C-V"):
                        break
                else:
                    continue
                break
            else:
                raise ValueError("No srl column found for %r" % predicate)
            instances.append(
                ConllSRLInstance(tree, wordnum, predicate, rolesets[wordnum], spanlist)
            )

        return instances

    # /////////////////////////////////////////////////////////////////
    # Helper Methods
    # /////////////////////////////////////////////////////////////////

    def _require(self, *columntypes):
        for columntype in columntypes:
            if columntype not in self._colmap:
                raise ValueError(
                    "This corpus does not contain a %s " "column." % columntype
                )

    @staticmethod
    def _get_column(grid, column_index):
        return [grid[i][column_index] for i in range(len(grid))]


class ConllSRLInstance:
    """

    An SRL instance from a CoNLL corpus, which identifies and

    providing labels for the arguments of a single verb.

    """

    # [xx] add inst.core_arguments, inst.argm_arguments?

    def __init__(self, tree, verb_head, verb_stem, roleset, tagged_spans):
        self.verb = []
        """A list of the word indices of the words that compose the

           verb whose arguments are identified by this instance.

           This will contain multiple word indices when multi-word

           verbs are used (e.g. 'turn on')."""

        self.verb_head = verb_head
        """The word index of the head word of the verb whose arguments

           are identified by this instance.  E.g., for a sentence that

           uses the verb 'turn on,' ``verb_head`` will be the word index

           of the word 'turn'."""

        self.verb_stem = verb_stem

        self.roleset = roleset

        self.arguments = []
        """A list of ``(argspan, argid)`` tuples, specifying the location

           and type for each of the arguments identified by this

           instance.  ``argspan`` is a tuple ``start, end``, indicating

           that the argument consists of the ``words[start:end]``."""

        self.tagged_spans = tagged_spans
        """A list of ``(span, id)`` tuples, specifying the location and

           type for each of the arguments, as well as the verb pieces,

           that make up this instance."""

        self.tree = tree
        """The parse tree for the sentence containing this instance."""

        self.words = tree.leaves()
        """A list of the words in the sentence containing this

           instance."""

        # Fill in the self.verb and self.arguments values.
        for (start, end), tag in tagged_spans:
            if tag in ("V", "C-V"):
                self.verb += list(range(start, end))
            else:
                self.arguments.append(((start, end), tag))

    def __repr__(self):
        # Originally, its:
        ##plural = 's' if len(self.arguments) != 1 else ''
        plural = "s" if len(self.arguments) != 1 else ""
        return "<ConllSRLInstance for %r with %d argument%s>" % (
            (self.verb_stem, len(self.arguments), plural)
        )

    def pprint(self):
        verbstr = " ".join(self.words[i][0] for i in self.verb)
        hdr = f"SRL for {verbstr!r} (stem={self.verb_stem!r}):\n"
        s = ""
        for i, word in enumerate(self.words):
            if isinstance(word, tuple):
                word = word[0]
            for (start, end), argid in self.arguments:
                if i == start:
                    s += "[%s " % argid
                if i == end:
                    s += "] "
            if i in self.verb:
                word = "<<%s>>" % word
            s += word + " "
        return hdr + textwrap.fill(
            s.replace(" ]", "]"), initial_indent="    ", subsequent_indent="    "
        )


class ConllSRLInstanceList(list):
    """

    Set of instances for a single sentence

    """

    def __init__(self, tree, instances=()):
        self.tree = tree
        list.__init__(self, instances)

    def __str__(self):
        return self.pprint()

    def pprint(self, include_tree=False):
        # Sanity check: trees should be the same
        for inst in self:
            if inst.tree != self.tree:
                raise ValueError("Tree mismatch!")

        # If desired, add trees:
        if include_tree:
            words = self.tree.leaves()
            pos = [None] * len(words)
            synt = ["*"] * len(words)
            self._tree2conll(self.tree, 0, words, pos, synt)

        s = ""
        for i in range(len(words)):
            # optional tree columns
            if include_tree:
                s += "%-20s " % words[i]
                s += "%-8s " % pos[i]
                s += "%15s*%-8s " % tuple(synt[i].split("*"))

            # verb head column
            for inst in self:
                if i == inst.verb_head:
                    s += "%-20s " % inst.verb_stem
                    break
            else:
                s += "%-20s " % "-"
            # Remaining columns: self
            for inst in self:
                argstr = "*"
                for (start, end), argid in inst.tagged_spans:
                    if i == start:
                        argstr = f"({argid}{argstr}"
                    if i == (end - 1):
                        argstr += ")"
                s += "%-12s " % argstr
            s += "\n"
        return s

    def _tree2conll(self, tree, wordnum, words, pos, synt):
        assert isinstance(tree, Tree)
        if len(tree) == 1 and isinstance(tree[0], str):
            pos[wordnum] = tree.label()
            assert words[wordnum] == tree[0]
            return wordnum + 1
        elif len(tree) == 1 and isinstance(tree[0], tuple):
            assert len(tree[0]) == 2
            pos[wordnum], pos[wordnum] = tree[0]
            return wordnum + 1
        else:
            synt[wordnum] = f"({tree.label()}{synt[wordnum]}"
            for child in tree:
                wordnum = self._tree2conll(child, wordnum, words, pos, synt)
            synt[wordnum - 1] += ")"
            return wordnum


class ConllChunkCorpusReader(ConllCorpusReader):
    """

    A ConllCorpusReader whose data file contains three columns: words,

    pos, and chunk.

    """

    def __init__(

        self, root, fileids, chunk_types, encoding="utf8", tagset=None, separator=None

    ):
        ConllCorpusReader.__init__(
            self,
            root,
            fileids,
            ("words", "pos", "chunk"),
            chunk_types=chunk_types,
            encoding=encoding,
            tagset=tagset,
            separator=separator,
        )