Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os | |
import os.path as osp | |
import mmcv | |
import mmengine | |
import numpy as np | |
from mmocr.utils import crop_img, dump_ocr_data | |
def collect_files(img_dir, gt_dir): | |
"""Collect all images and their corresponding groundtruth files. | |
Args: | |
img_dir (str): The image directory | |
gt_dir (str): The groundtruth directory | |
Returns: | |
files (list): The list of tuples (img_file, groundtruth_file) | |
""" | |
assert isinstance(img_dir, str) | |
assert img_dir | |
assert isinstance(gt_dir, str) | |
assert gt_dir | |
ann_list, imgs_list = [], [] | |
for gt_file in os.listdir(gt_dir): | |
# Filtering repeated and missing images | |
if '(' in gt_file or gt_file == 'X51006619570.txt': | |
continue | |
ann_list.append(osp.join(gt_dir, gt_file)) | |
imgs_list.append(osp.join(img_dir, gt_file.replace('.txt', '.jpg'))) | |
files = list(zip(sorted(imgs_list), sorted(ann_list))) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
return files | |
def collect_annotations(files, nproc=1): | |
"""Collect the annotation information. | |
Args: | |
files (list): The list of tuples (image_file, groundtruth_file) | |
nproc (int): The number of process to collect annotations | |
Returns: | |
images (list): The list of image information dicts | |
""" | |
assert isinstance(files, list) | |
assert isinstance(nproc, int) | |
if nproc > 1: | |
images = mmengine.track_parallel_progress( | |
load_img_info, files, nproc=nproc) | |
else: | |
images = mmengine.track_progress(load_img_info, files) | |
return images | |
def load_img_info(files): | |
"""Load the information of one image. | |
Args: | |
files (tuple): The tuple of (img_file, groundtruth_file) | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
assert isinstance(files, tuple) | |
img_file, gt_file = files | |
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( | |
'.')[0] | |
# read imgs while ignoring orientations | |
img = mmcv.imread(img_file, 'unchanged') | |
img_info = dict( | |
file_name=osp.join(osp.basename(img_file)), | |
height=img.shape[0], | |
width=img.shape[1], | |
segm_file=osp.join(osp.basename(gt_file))) | |
if osp.splitext(gt_file)[1] == '.txt': | |
img_info = load_txt_info(gt_file, img_info) | |
else: | |
raise NotImplementedError | |
return img_info | |
def load_txt_info(gt_file, img_info): | |
"""Collect the annotation information. | |
Annotation Format | |
x1, y1, x2, y2, x3, y3, x4, y4, transcript | |
Args: | |
gt_file (list): The list of tuples (image_file, groundtruth_file) | |
img_info (int): The dict of the img and annotation information | |
Returns: | |
img_info (list): The dict of the img and annotation information | |
""" | |
with open(gt_file, encoding='unicode_escape') as f: | |
anno_info = [] | |
for ann in f.readlines(): | |
# skip invalid annotation line | |
try: | |
bbox = np.array(ann.split(',')[0:8]).astype(int).tolist() | |
except ValueError: | |
continue | |
word = ann.split(',')[-1].replace('\n', '').strip() | |
anno = dict(bbox=bbox, word=word) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def generate_ann(root_path, split, image_infos): | |
"""Generate cropped annotations and label txt file. | |
Args: | |
root_path (str): The root path of the dataset | |
split (str): The split of dataset. Namely: training or test | |
image_infos (list[dict]): A list of dicts of the img and | |
annotation information | |
""" | |
dst_image_root = osp.join(root_path, 'crops', split) | |
if split == 'training': | |
dst_label_file = osp.join(root_path, 'train_label.json') | |
elif split == 'test': | |
dst_label_file = osp.join(root_path, 'test_label.json') | |
os.makedirs(dst_image_root, exist_ok=True) | |
img_info = [] | |
for image_info in image_infos: | |
index = 1 | |
src_img_path = osp.join(root_path, 'imgs', split, | |
image_info['file_name']) | |
image = mmcv.imread(src_img_path) | |
src_img_root = image_info['file_name'].split('.')[0] | |
for anno in image_info['anno_info']: | |
word = anno['word'] | |
dst_img = crop_img(image, anno['bbox'], 0, 0) | |
# Skip invalid annotations | |
if min(dst_img.shape) == 0 or len(word) == 0: | |
continue | |
dst_img_name = f'{src_img_root}_{index}.png' | |
index += 1 | |
dst_img_path = osp.join(dst_image_root, dst_img_name) | |
mmcv.imwrite(dst_img, dst_img_path) | |
img_info.append({ | |
'file_name': dst_img_name, | |
'anno_info': [{ | |
'text': word | |
}] | |
}) | |
dump_ocr_data(img_info, dst_label_file, 'textrecog') | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate training and test set of SROIE') | |
parser.add_argument('root_path', help='Root dir path of SROIE') | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='Number of process') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
for split in ['training', 'test']: | |
print(f'Processing {split} set...') | |
with mmengine.Timer( | |
print_tmpl='It takes {}s to convert SROIE annotation'): | |
files = collect_files( | |
osp.join(root_path, 'imgs', split), | |
osp.join(root_path, 'annotations', split)) | |
image_infos = collect_annotations(files, nproc=args.nproc) | |
generate_ann(root_path, split, image_infos) | |
if __name__ == '__main__': | |
main() | |