Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import os.path as osp | |
from typing import List, Union | |
import numpy as np | |
from mmdet.datasets.coco import CocoDataset | |
from mmocr.registry import DATASETS | |
class AdelDataset(CocoDataset): | |
"""Dataset for text detection while ann_file in Adelai's coco format. | |
Args: | |
ann_file (str): Annotation file path. Defaults to ''. | |
metainfo (dict, optional): Meta information for dataset, such as class | |
information. Defaults to None. | |
data_root (str): The root directory for ``data_prefix`` and | |
``ann_file``. Defaults to ''. | |
data_prefix (dict): Prefix for training data. Defaults to | |
dict(img_path=''). | |
filter_cfg (dict, optional): Config for filter data. Defaults to None. | |
indices (int or Sequence[int], optional): Support using first few | |
data in annotation file to facilitate training/testing on a smaller | |
dataset. Defaults to None which means using all ``data_infos``. | |
serialize_data (bool, optional): Whether to hold memory using | |
serialized objects, when enabled, data loader workers can use | |
shared RAM from master process instead of making a copy. Defaults | |
to True. | |
pipeline (list, optional): Processing pipeline. Defaults to []. | |
test_mode (bool, optional): ``test_mode=True`` means in test phase. | |
Defaults to False. | |
lazy_init (bool, optional): Whether to load annotation during | |
instantiation. In some cases, such as visualization, only the meta | |
information of the dataset is needed, which is not necessary to | |
load annotation file. ``Basedataset`` can skip load annotations to | |
save time by set ``lazy_init=False``. Defaults to False. | |
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a | |
None img. The maximum extra number of cycles to get a valid | |
image. Defaults to 1000. | |
""" | |
METAINFO = {'classes': ('text', )} | |
def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]: | |
"""Parse raw annotation to target format. | |
Args: | |
raw_data_info (dict): Raw data information loaded from ``ann_file`` | |
Returns: | |
Union[dict, List[dict]]: Parsed annotation. | |
""" | |
img_info = raw_data_info['raw_img_info'] | |
ann_info = raw_data_info['raw_ann_info'] | |
data_info = {} | |
img_path = osp.join(self.data_prefix['img_path'], | |
img_info['file_name']) | |
data_info['img_path'] = img_path | |
data_info['img_id'] = img_info['img_id'] | |
data_info['height'] = img_info['height'] | |
data_info['width'] = img_info['width'] | |
instances = [] | |
for ann in ann_info: | |
instance = {} | |
if ann.get('ignore', False): | |
continue | |
x1, y1, w, h = ann['bbox'] | |
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) | |
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) | |
if inter_w * inter_h == 0: | |
continue | |
if ann['area'] <= 0 or w < 1 or h < 1: | |
continue | |
if ann['category_id'] not in self.cat_ids: | |
continue | |
bbox = [x1, y1, x1 + w, y1 + h] | |
if ann.get('iscrowd', False): | |
instance['ignore'] = 1 | |
else: | |
instance['ignore'] = 0 | |
instance['bbox'] = bbox | |
instance['bbox_label'] = self.cat2label[ann['category_id']] | |
# instance['polygon'] = bezier2poly( | |
# np.array(ann['bezier_pts'], dtype=np.float32)) | |
instance['beziers'] = np.array(ann['bezier_pts'], dtype=np.float32) | |
instance['text'] = ann['rec'] | |
instances.append(instance) | |
data_info['instances'] = instances | |
return data_info | |