Spaces:
Sleeping
Sleeping
File size: 3,993 Bytes
24c4def |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import List, Union
import numpy as np
from mmdet.datasets.coco import CocoDataset
from mmocr.registry import DATASETS
@DATASETS.register_module()
class AdelDataset(CocoDataset):
"""Dataset for text detection while ann_file in Adelai's coco format.
Args:
ann_file (str): Annotation file path. Defaults to ''.
metainfo (dict, optional): Meta information for dataset, such as class
information. Defaults to None.
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (dict): Prefix for training data. Defaults to
dict(img_path='').
filter_cfg (dict, optional): Config for filter data. Defaults to None.
indices (int or Sequence[int], optional): Support using first few
data in annotation file to facilitate training/testing on a smaller
dataset. Defaults to None which means using all ``data_infos``.
serialize_data (bool, optional): Whether to hold memory using
serialized objects, when enabled, data loader workers can use
shared RAM from master process instead of making a copy. Defaults
to True.
pipeline (list, optional): Processing pipeline. Defaults to [].
test_mode (bool, optional): ``test_mode=True`` means in test phase.
Defaults to False.
lazy_init (bool, optional): Whether to load annotation during
instantiation. In some cases, such as visualization, only the meta
information of the dataset is needed, which is not necessary to
load annotation file. ``Basedataset`` can skip load annotations to
save time by set ``lazy_init=False``. Defaults to False.
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
None img. The maximum extra number of cycles to get a valid
image. Defaults to 1000.
"""
METAINFO = {'classes': ('text', )}
def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]:
"""Parse raw annotation to target format.
Args:
raw_data_info (dict): Raw data information loaded from ``ann_file``
Returns:
Union[dict, List[dict]]: Parsed annotation.
"""
img_info = raw_data_info['raw_img_info']
ann_info = raw_data_info['raw_ann_info']
data_info = {}
img_path = osp.join(self.data_prefix['img_path'],
img_info['file_name'])
data_info['img_path'] = img_path
data_info['img_id'] = img_info['img_id']
data_info['height'] = img_info['height']
data_info['width'] = img_info['width']
instances = []
for ann in ann_info:
instance = {}
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
if inter_w * inter_h == 0:
continue
if ann['area'] <= 0 or w < 1 or h < 1:
continue
if ann['category_id'] not in self.cat_ids:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if ann.get('iscrowd', False):
instance['ignore'] = 1
else:
instance['ignore'] = 0
instance['bbox'] = bbox
instance['bbox_label'] = self.cat2label[ann['category_id']]
# instance['polygon'] = bezier2poly(
# np.array(ann['bezier_pts'], dtype=np.float32))
instance['beziers'] = np.array(ann['bezier_pts'], dtype=np.float32)
instance['text'] = ann['rec']
instances.append(instance)
data_info['instances'] = instances
return data_info
|