sudip2003's picture
Create app.py
180ada1 verified
raw
history blame
5.33 kB
import gradio as gr
import PyPDF2
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import Chroma
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
from langchain_groq import ChatGroq
from langchain.chains import ConversationalRetrievalChain
from langchain_community.document_loaders import WebBaseLoader
import os
# Function to process text and create ConversationalRetrievalChain
def process_text_and_create_chain(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_text(text)
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
model_name = "BAAI/bge-small-en"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
hf = HuggingFaceBgeEmbeddings(
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
)
db = Chroma.from_texts(texts, hf, metadatas=metadatas)
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
llm_groq = ChatGroq(
groq_api_key="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",
model_name='mixtral-8x7b-32768'
)
chain = ConversationalRetrievalChain.from_llm(
llm=llm_groq,
chain_type="stuff",
retriever=db.as_retriever(),
memory=memory,
return_source_documents=True,
)
return chain
# Initialize global variables
global_chain = None
# Function to handle PDF upload
def handle_pdf_upload(file):
if file is None:
return "No file uploaded. Please upload a PDF file.", gr.update(visible=False), gr.update(visible=True)
if not file.name.lower().endswith('.pdf'):
return "Error: Please upload a PDF file.", gr.update(visible=False), gr.update(visible=True)
try:
print(f"Processing file: {file.name}")
pdf_reader = PyPDF2.PdfReader(file.name)
pdf_text = ""
for page in pdf_reader.pages:
pdf_text += page.extract_text()
global global_chain
global_chain = process_text_and_create_chain(pdf_text)
return "PDF processed successfully.", gr.update(visible=True), gr.update(visible=False)
except Exception as e:
print(f"Error processing PDF: {str(e)}")
return f"Error processing PDF: {str(e)}", gr.update(visible=False), gr.update(visible=True)
# Function to handle link input
def handle_link_input(link):
try:
loader = WebBaseLoader(link)
data = loader.load()
doc = "\n".join([doc.page_content for doc in data])
global global_chain
global_chain = process_text_and_create_chain(doc)
return "Link processed successfully.", gr.update(visible=True), gr.update(visible=False)
except Exception as e:
print(f"Error processing link: {str(e)}")
return f"Error processing link: {str(e)}", gr.update(visible=False), gr.update(visible=True)
# Function to handle user query
def handle_query(query, chatbot):
if global_chain is None:
return chatbot + [("Bot", "Please provide input first.")]
try:
result = global_chain({"question": query})
return chatbot + [("You", query), ("System", result['answer'])]
except Exception as e:
print(f"Error processing query: {str(e)}")
return chatbot + [("Bot", f"Error: {str(e)}")]
# Function to toggle input method
def toggle_input_method(input_method):
if input_method == "Upload PDF":
return gr.update(visible=True), gr.update(visible=False)
elif input_method == "Paste Link":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chat-With-Context")
with gr.Row():
input_method = gr.Radio(["Upload PDF", "Paste Link"], label="Choose Input Method", interactive=True)
with gr.Row(visible=False) as upload_section:
pdf_input = gr.File(label="Upload PDF")
upload_button = gr.Button("Process PDF")
with gr.Row(visible=False) as text_input_section:
text_input = gr.Textbox(label="Paste Link")
submit_text_button = gr.Button("Process Link")
input_status = gr.Textbox(label="Status", interactive=False)
with gr.Row(visible=False) as chat_section:
chatbot = gr.Chatbot(label="Chat")
query_input = gr.Textbox(label="Write Your Question", placeholder="Message Chat-With-Context")
send_button = gr.Button("Send")
input_method.change(toggle_input_method, inputs=input_method, outputs=[upload_section, text_input_section])
upload_button.click(fn=handle_pdf_upload, inputs=pdf_input, outputs=[input_status, chat_section, upload_section])
submit_text_button.click(fn=handle_link_input, inputs=text_input, outputs=[input_status, chat_section, text_input_section])
send_button.click(fn=handle_query, inputs=[query_input, chatbot], outputs=chatbot)
demo.launch(share=True)